

National and Kapodistrian University of Athens Faculty of Biology SECTION OF ECOLOGY & SYSTEMATICS 9 July 2019, Manzherok, Russia

Teaching Challenges in Inland Water Biology

Dr. Ioanna Louvrou

Dr. Athena Economou-Amilli

AKTRU2019

Contents

- 1. Introduction
 - ✓ Inland Water. What does it mean?
 - ✓ 'Inland Water Biology' & 'Limnology'.
 - ✓ Why study Inland Water Biology ?
- 2. Key Aspects of Inland Water Biology An Educational Approach
 - ✓ Undergraduate modules. Learning outcomes.
 - ✓ Postgraduate modules. Learning outcomes.

3. References

AKTRU2019

Introduction

- ✓ Inland Water. What does it mean ?
- ✓ Inland Water Biology and the Similar Term 'Limnology'.
- ✓ Why study Inland Water Biology ?
 - Goods & Services

AKTRU2019

What is 'Inland Water' ?

AKTRU2019

According to the **Convention on Biological Diversity** (United Nations Environment Programme) https://www.cbd.int/waters/inland-waters/default.shtml

'Inland Waters' is a term we use for aquatic-influenced environments located within land boundaries.

'Inland Waters'

- Lakes; rivers; ponds; streams; springs; cave waters; floodplains; marshes swamps
- Groundwater

AKTRU2019

- Estuaries. Transitional zones between rivers & sea. Most coastal aquatic habitats are best considered as the lower sections of river basins.
 - \rightarrow can be fresh; saline or brackishwater
 - > Location counts; not salinity
 - Salinity of Inland Waters, S < 0.3 ‰ (S > 0.3‰ of Saline Waters)

Doxa Lake

Evinos River

Stream, mountainous Nafpaktia

Inland Water Biology & Limnology

Inland Water Biology

the study of the biological characteristics and interactions of organisms of inland waters.

This study is often largely restricted to the **organisms** themselves, such as their biology, life cycles (life histories), populations, or, occasionally, communities.

Limnology

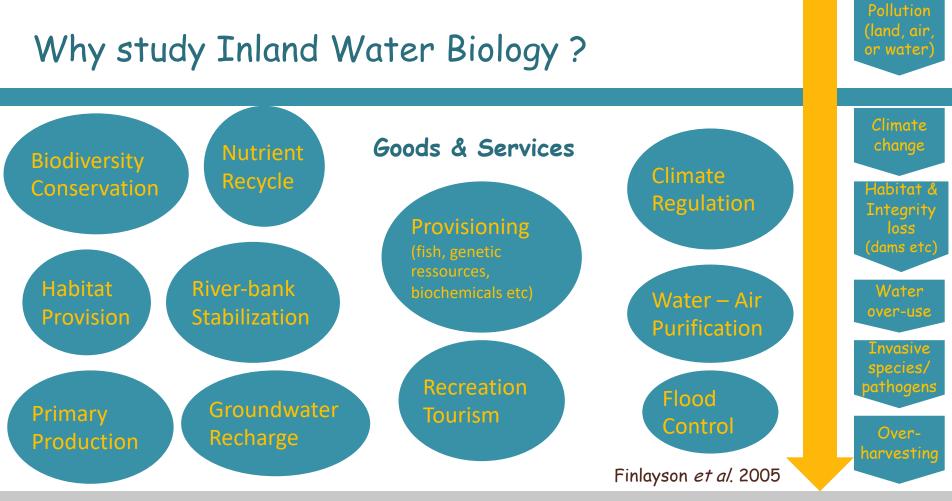
the study of the structural and functional relationships and productivity of organisms of inland aquatic ecosystems as they are regulated by the dynamics of their physical, chemical, and biotic environments.

Wetzel 2001

Inland Water Biology & Limnology

Inland Water Biology

Focus on the Anatomy of the Ecosystem

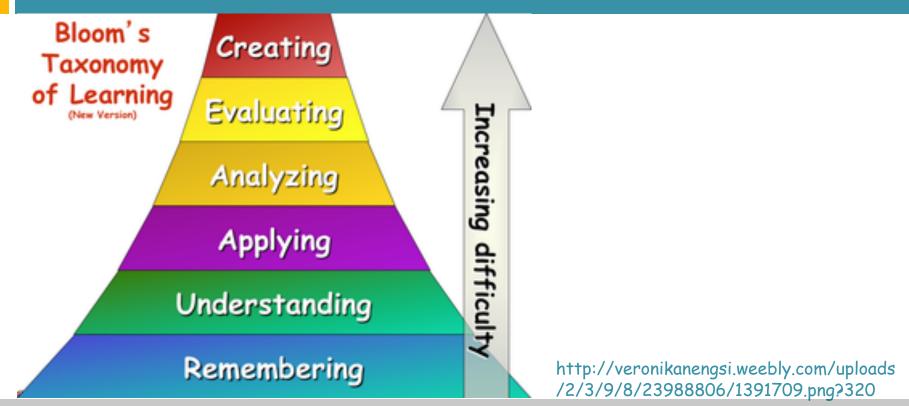

Limnology

Focus on the Physiology of the Ecosystem: the functional metabolism, and the controlling factors of the regulation of that physiology

Wetzel 2001

AKTRU2019

AKTRU2019


Key Aspects of Inland Water Biology. An Educational Approach

- ✓ Undergraduate modules. Learning outcomes.
- ✓ Postgraduate modules. Learning outcomes.

AKTRU2019

Bloom's Taxonomy (1956) Revised Anderson & Krathwohl's (2001)

AKTRU2019

Undergraduate modules. Learning outcomes

. . . .

Integrated view of structure and a basic understanding of functioning, dynamics

Basic water quality assessment & monitoring

Potential impacts of human activities

Basic biological processes → biological interaction processes and their importance to ecosystems

Identification of characteristic groups of organisms (based on morphology) & Habitat adaptation

Habitats & Evaluation of abiotic conditions

Field work (sampling), laboratory work (analyses)

Team work, Scientific publications, Presentation (oral & written)

Undergraduate modules. Learning outcomes

. . . .

Integrated view of structure and a basic understanding of functioning, dynamics

Basic water quality assessment & monitoring

Potential impacts of human activities

Basic biological processes → biological interaction processes and their importance to ecosystems

Identification of characteristic groups of organisms (based on morphology) & Habitat adaptation

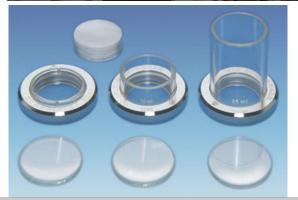

Habitats & Evaluation of abiotic conditions

Field work (sampling), laboratory work (analyses)

Team work, Scientific publications, Presentation (oral & written)

Sampling techniques

Microscopic analyses



https://now.uiowa.edu/sites/now.uiowa.edu/files/photogalleries/2017_08_31-Creek%20Study-tschoon-014.jpg

https://www.hoskin.qc.ca/catalog/images/categ ories/Peche%20electrique.jpg

AKTRU2019

Inland Water Ecosystem

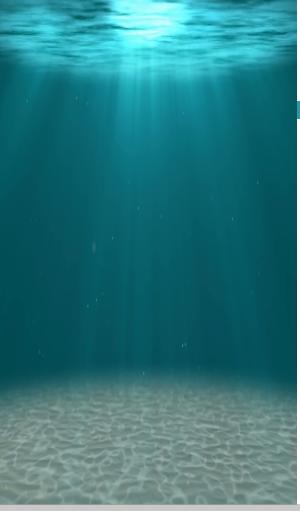
= Lake; River; Reservoir etc. & its Drainage Basin

Inland water ecosystems are ecologically dynamic.

AKTRU2019

Drainage Basin

Burabay National Park; Kazakhstan; 2018


 \rightarrow Lake; River Characteristics

Geomorphology; soil composition; vegetation and the biota including humans

Aquatic Ecosystem

i. Lake; River; Reservoir etc. & ii. The corresponded Drainage Basin

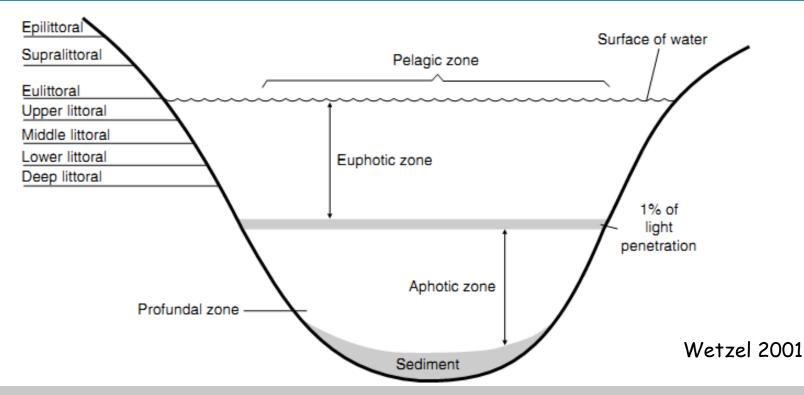
AKTRU2019

AKTRU2019

Abiotic Factors

1. Geomorphology

(sediment types, soil stability and grain size, elevation and slopes, geomorphological and sedimental properties of the drainage basin, filling rates etc)


2. Hydrodynamic characteristics Water level fluctuations, Inflow, Outflow, Flushing rates

3. Morphometry

Drainage Basin and Channel Characteristics Lake/ River basin shape & size (A, V, z, L, DL etc)

4. Physical & chemical parameters Light, T, O_2 , S, conductivity, climate, nutrient concentrations, TDS, pH etc

Zonation & Terminology

AKTRU2019

Undergraduate modules. Learning outcomes

. . . .

Integrated view of structure and a basic understanding of functioning, dynamics

Basic water quality assessment & monitoring

Potential impacts of human activities

Basic biological processes → biological interaction processes and their importance to ecosystems

Identification of characteristic groups of organisms (based on morphology) & Habitat adaptation

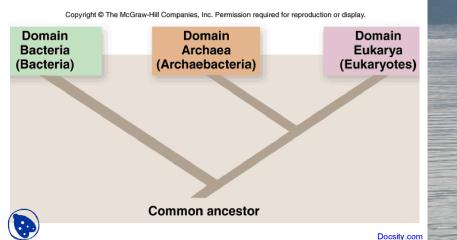
Habitats & Evaluation of abiotic conditions

Field work (sampling), laboratory work (analyses)

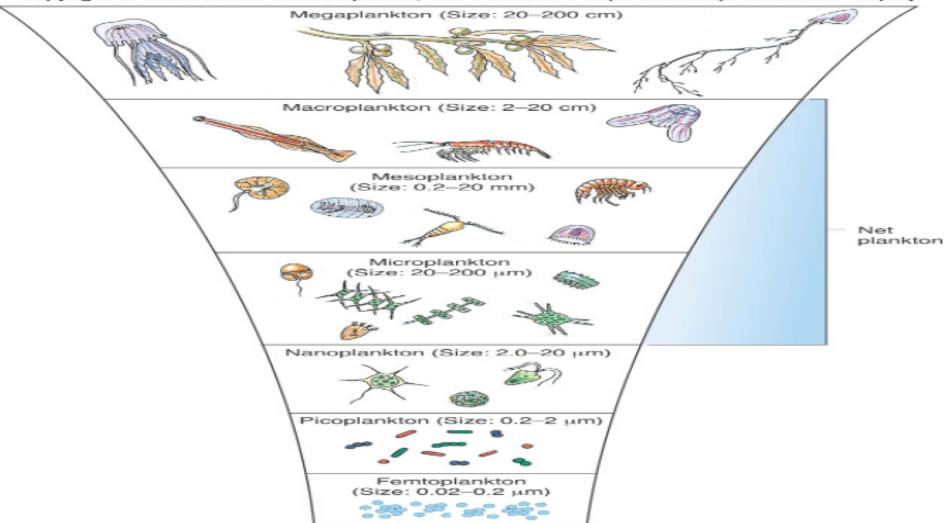
Team work, Scientific publications, Presentation (oral & written)

Biota

Biodiversity


Taxonomy & Systematics

 Archaea, Bacteria and Eukaryotes (Algae, Vascular Plants, Fungi, Invertebrates, Vertebrates, etc)


Woese and Fox **1977** Distinguish A*rchaea from Bacteria*

Woese; Kandler & Wheelis **1990** Archaea Domain Description

AKTRU2019

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

AKTRU2019

Stonewort = stone plant

Nafpaktos; 201

AKTRU2019

utflow of thermal spring, Kythnos Island

A population of Ventrosia ventrosa

egg-capsules on *V. ventrosa*

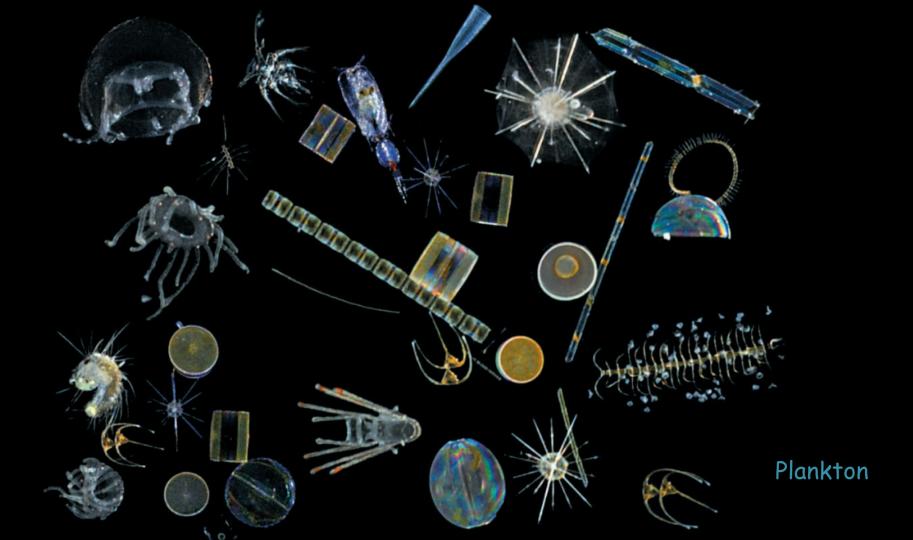
background square = 1 mm²

Biota

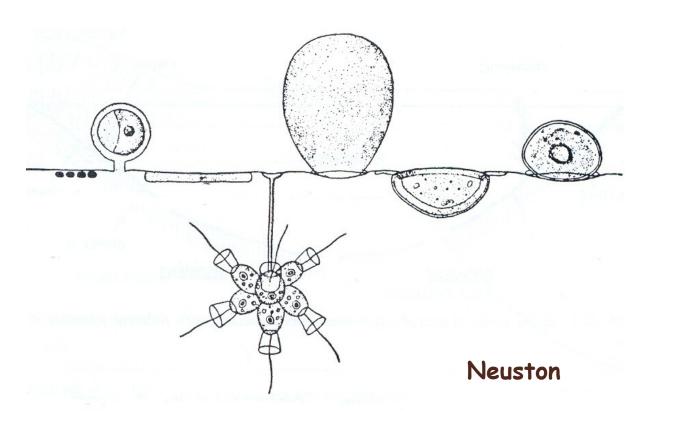
Biodiversity

Ecology

- Aquatic,
- Hydrophilic,
- Aerophytic,
- Terrestrial


- •Planktic,
- Nektic,
- Pleustic, Neustic,
- Benthic,
- Periphytic,

• Emergent, Floating-Leaved, Submersed Aquatic macrophytes attached to the substratum or freely floating etc.


• Permanent / Seasonal organisms,

Meroplanktic, holoplanktic organisms

AKTRU2019

Pleuston

Wetzel 2001

Benthos

Trichonida lake

Benthos

Evinos river

AKTRU2019

Trichonida lake

AKTRU2019

Undergraduate modules. Learning outcomes

Integrated view of structure and a basic understanding of functioning, dynamics

Basic water quality assessment & monitoring Potential impacts of human activities Basic biological processes \rightarrow biological interaction processes and their importance to ecosystems Identification of characteristic groups of organisms (based on morphology) & Habitat adaptation Habitats & Evaluation of abiotic conditions Field work (sampling), laboratory work (analyses) Team work, Scientific publications, Presentation (oral & written)

- Primary producers,
- Grazers,
- Consumers (1st, 2nd, 3dclass),
- Decomposers, Detritivores,
 - * Mixotrophs, omnivores, parasites, symbionts.

Food Web Levels

AKTRU2019

Plankton

Phytoplankton Zooplankton Archaeoplankton Bacterioplankton **Mycoplankton** Viroplankton

A spoon: > 10⁶ living organisms !!!

Zooplankton

https://i.pinimg.com/736x/80/60/28/806028913b4edd 7cc1d093aa28736f1d--science-and-naturemicrobiology.jpg Zygorhizidium planktonicum Asterionella formosa

30 µm

Jason Oyadomari

https://nioo.knaw.nl/sites/d efault/files/1_1_thumb.jpg http://www.buildingthepride.com/faculty/pgdavison/images/Fungi/DS C01203Stackcm.jpg

Rhizophydium sphaerotheca ?)
 to Pinus pollen

Fungi

- Saprotrophic
- Parasitic,
- Symbiotic

Example of Mixotrophy

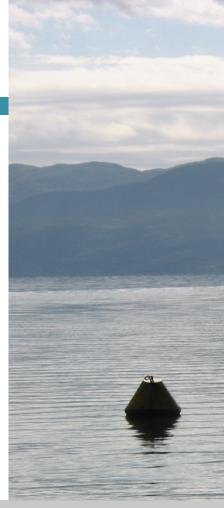
Dinobryon; Chrysophyceae

Colony of photosynthetic cells Inside a lorica made of cellulose

2 flagella

Mixotroph = Facultative Heterotroph able to shift between photosynthesis and ingesting smaller organisms or particles for food.

 \forall Cell 3 bacteria /min


The large size of Dinobryon \rightarrow difficult for herbivorous zooplankton to consume.

Biota

- Ecosystem dynamics
- Population ecology (community structure, succession, plankton paradox etc)

Food webs

 (compartments, microbial loop, primary production, blooms
 etc)

AKTRU2019

Posrgraduate modules. Learning outcomes

Biotechnology - Ecosystem Management

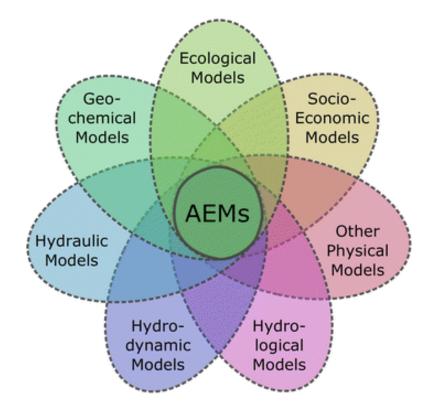
Water quality assessment & monitoring

Integrated view of structure, **functioning**, dynamics of Ecosystem

Understanding of the critical linkages between hydrological, geomorphologic, biogeochemical and ecological components

Identification of group of organisms by different techniques

Field work, laboratory work (plan and carry out experiment/field studies, modern analytical and computational methods)


Team work, Scientific publications, Report Presentation (oral & written)

(E) pond mesocosms, UK (Dossena *et al.*, 2012);
(F) pond mesocosms, Denmark (Liboriussen *et al.*, 2005);
(G) experimental flumes, Australia (Thompson *et al.*, 2013)

Stewart et al. 2013.

Major modelling disciplines that can contribute to aquatic ecosystem models (AEMs).

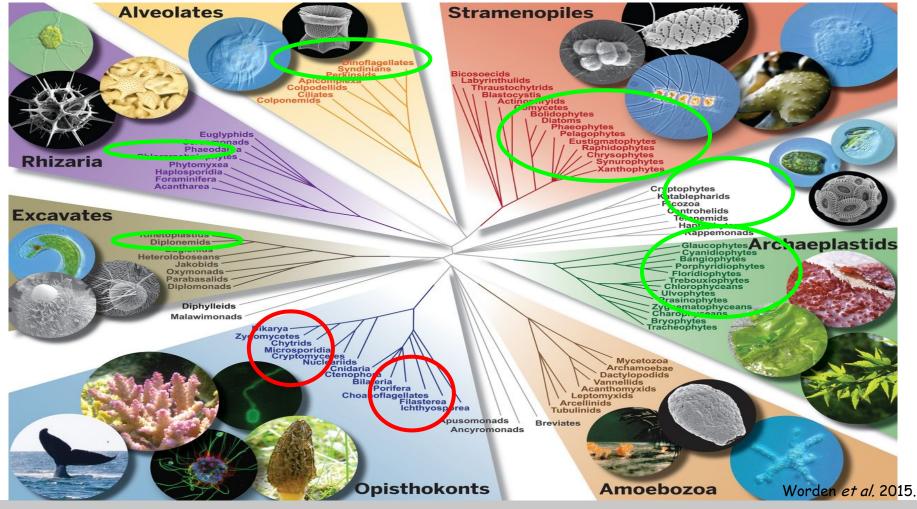
a great diversity among AEMs each modeller should select the most appropriate combination and size of the petals to fit the research question

Janssen et al. 2015

Posrgraduate modules. Learning outcomes

Biotechnology - Ecosystem Management

Water quality assessment & monitoring


Integrated view of structure, **functioning**, dynamics of Ecosystem

Understanding of the critical linkages between hydrological, geomorphologic, biogeochemical and ecological components

Identification of group of organisms by different techniques

Field work, laboratory work (plan and carry out experiment/field studies, modern analytical and computational methods)

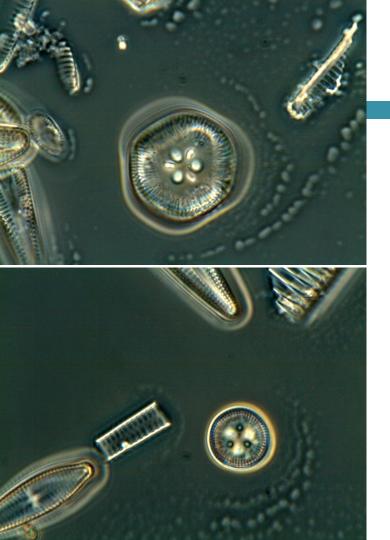
Team work, Scientific publications, Report Presentation (oral & written)

AKTRU2019

Species concept

- molecular species concept
- biological species concept
- morphological species concept S

{ (Cell size; shape and contents; Cell wall; extra cellular matrix; Thallus organization)


*Species concept in Algae

- The latter dominates algal systematics
- > strong connections between Algal Morphology; Physiology & Ecology

Trichonida lake

Trichonida lake

Endemism

Pantocsekiella trichonidea (Economou-Amilli) Kiss & Ács

Endemic Taxa, Lake Trichonis

Lindavia trichonidea var*. parva* (Economou-Amilli) Nakov *et al*.

10µm

Posrgraduate modules. Learning outcomes

Biotechnology - Ecosystem Management

Water quality assessment & monitoring

Integrated view of structure, functioning, dynamics of Ecosystem

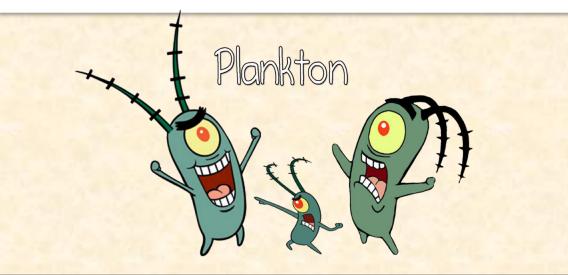
Understanding of the critical linkages between hydrological, geomorphologic, biogeochemical and ecological components

Identification of group of organisms by different techniques

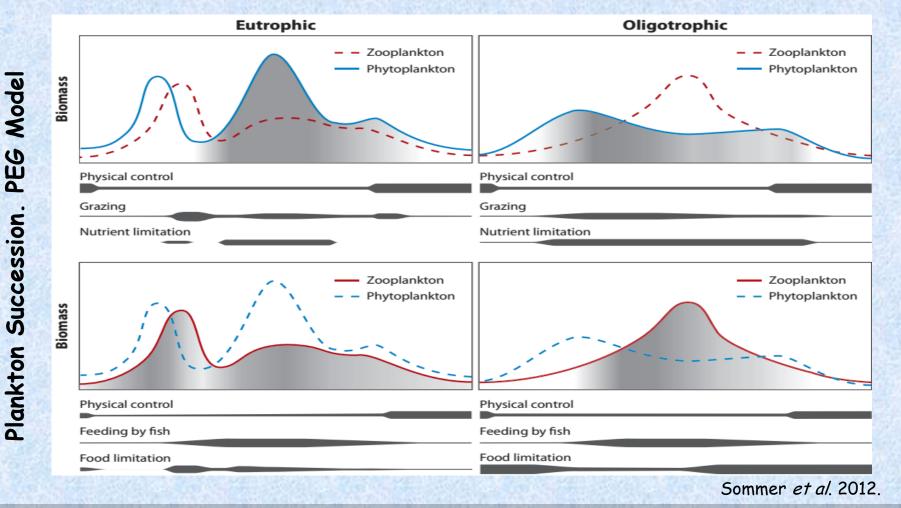
Field work, laboratory work (plan and carry out experiment/field studies, modern analytical and computational methods)

Team work, Scientific publications, Report Presentation (oral & written) Vol. XCV, No. 882

AKTRU2019

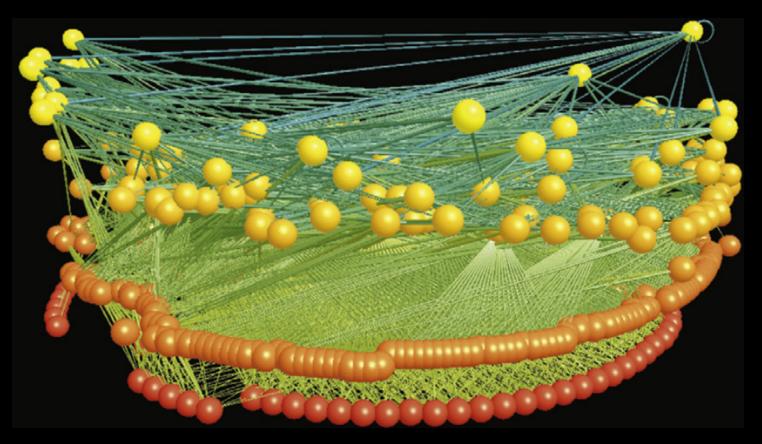

The American Naturalist

May-June, 1961

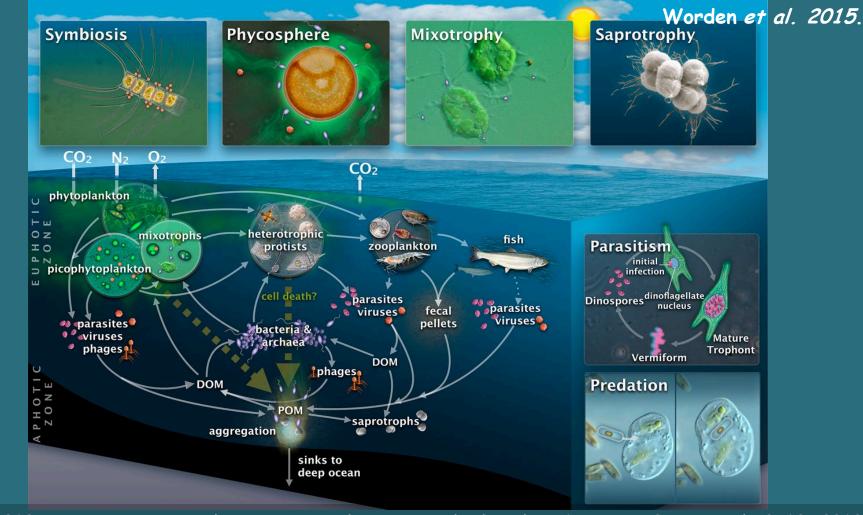

THE PARADOX OF THE PLANKTON*

G. E. HUTCHINSON

Osborn Zoological Laboratory, New Haven, Connecticut



International Symposium and Summer Schools, Alta Dountains, Ru



AKTRU2019

Lower 2010 created using the software Foodweb3D, which was provided by Rich Williams, J.A. Dunne and N.D. Martinez (Williams, R.J. Network3D Software. Microsoft Research, Cambridge, UK)

AKTRU2019

AKTRU2019

Biotechnology

FOOD

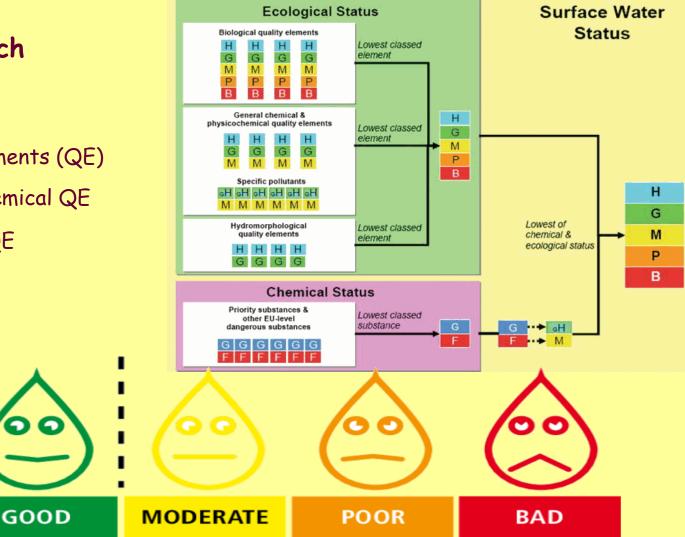
PHARMA

FEED

- Source of food,
- Food additives,
- Chemical and
- Pharmaceutical products.
- Genomics,
- Proteomics,
- Research
- Biological Resource / Bioresource Centers
- Protection & Remediation of the Environment (Biomonitoring, sewage & water treatment, Recycling, Bioremediation)
- Mitigation technologies (biofuels) etc

PERSONAL CARE & COSMETICS

HOUSEHOLD PRODUCTS ×


INDUSTRIAL

Integrated Approach

Monitoring of

- Biological Quality Elements (QE)
- Chemical & Physicochemical QE
- Hydromorphological QE

HIGH

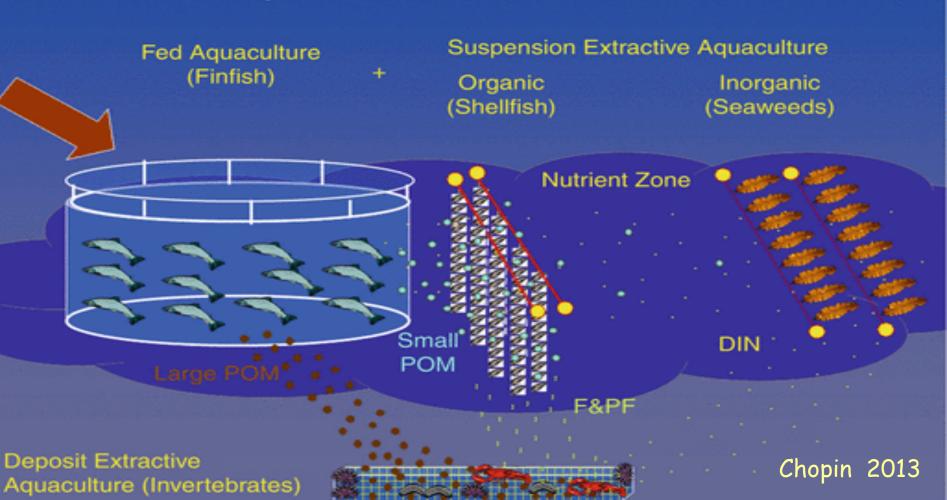
AKTRU2019

Water treatment plant, Aspropyrgos

AL O CONTRACTOR

https://www.niwa.co.nz/file/37211

High Rate Algae Ponds, HRAP


SolarLeaf

Algae bio-reactive facade

http://www.morethangreen.es/wp-content/uploads/2014/08/solarleafsolar-leaf-fachada-algas-bioreactivas-more-than-green-ml_ARUP-Fachada-algas_01_900.jpg

Integrated Multi-Trophic Aquaculture (IMTA)

References

Anderson L.W., & Krathwohl D.R. 2001. A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives: Complete Edition. New York: Longman.

BloomB.S. 1956.Taxonomy of Educational Objectives, Handbook: The Cognitive Domain. David McKay, New York. Chopin T. 2013. Aquaculture, Integrated Multi-trophic (IMTA). In: Christou P., Savin R., Costa-Pierce B.A., Misztal

I., Whitelaw C.B.A. (eds) Sustainable Food Production. Springer, New York, NY.

- Finlayson C.M. *et al.* 2005. Inland Water Systems. In Millenium Ecosystem Assessment: Ecosystems and Human Well-being: Current State and Trends, Vol. 1 (Hassan R., Scholes R. & Ash N., eds) pp. 551 583. Washington, DC: Island Press.
- Janssen A.B.G., Arhonditsis G.B., Beusen A., Bolding K., Bruce L., Bruggeman J., ... Mooij W.M. (2015). Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective. *Aquatic ecology*, 49(4), 513-548.
- Hutchinson G.E. 1961. The Paradox of the Plankton. The American Naturalist, Vol. 95, No. 882. pp. 137-145. Sommer *et al.* 2012. Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession. *Wetzel* R.G. (*2001*) Limnology Lake and River Ecosystems. *Third Edition*, Academic Press, San Diego, 1006p.
- Woese C.R., & Fox G.E. 1977. "Phylogenetic structure of the prokaryotic domain: the primary kingdoms". Proceedings of the National Academy of Sciences of the United States of America. 74 (11): 5088-5090.
- Woese C.R., Kandler O., Wheelis M.L. 1990. "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4576-4579. Bibcode:1990PNAS...87.4576W.
- Worden *et al.* 2015 Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 347 (6223).

National and Kapodistrian University of Athens Faculty of Biology Department of Ecology & Systematics

Thank you !

Спасибо за внимание