Tuning Plasmon Resonance of In$_2$O$_3$ Nanocrystals Throughout Mid-Infrared: Dopant, Phase, and Electronic Structure Dependence

Hanbing Fang, Manu Hegde, Penghui Yin, Yi Tan, and Pavle V. Radovanovic*

Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
Email: pavler@uwaterloo.ca

Synthesis, properties, and applications of gold and silver nanostructures with tunable localized surface plasmon resonances (LSPRs) have been a subject of intense investigation over the past decade. The focus on these noble metal plasmonic nanomaterials stems from their facile synthesis, stability to oxidation, and the visible-range LSPR transitions. However, among other drawbacks, these nanostructures are also costly for large-scale applications and exhibit high optical losses. Consequently, doped transparent metal oxide nanocrystals have emerged as a new class of unconventional plasmonic materials. In this talk I will present the results of our recent work on colloidal indium oxide-based plasmonic nanocrystals. Using size-structure correlation, indium tin oxide (ITO) nanocrystals were prepared in the stable bixbyite (bcc-ITO) and metastable corundum (rh-ITO) phase, revealing a dramatic difference in their optical and electrical properties. Unlike rh-ITO, bcc-ITO nanocrystals exhibit a strong LSPR absorption in the near-infrared region due to the presence of free electrons, enabled by the low activation energy donor states. I will also discuss colloidal synthesis and spectroscopic properties of two new plasmonic nanocrystal systems based on In$_2$O$_3$, antimony and titanium-doped In$_2$O$_3$, and comparative investigation of their electronic structure using combined Drude-Lorenz model and density functional theory. Fundamental understanding of the electronic structure and phase-dependent plasmonic properties allowed us to design and prepare plasmonic In$_2$O$_3$-based nanocrystals tunable throughout the entire mid-infrared region. Application of these colloidal mid-IR plasmonic nanocrystals will also be discussed.

*Email: pavler@uwaterloo.ca