CHALLENGES IN IMPLEMENTATION OF LOW-K DIELECTRICS IN ADVANCED ULSI INTERCONNECTS

Mikhail R. Baklanov

North China University of Technology, Beijing

- Introduction
- > Why low-k and why needed ?
- ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

Introduction

- > Why low-k and why needed ?
- > ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

Two inventions that changed the modern world

State-of-the-art of modern IC

45 nm Nehalem CPU

The IC volume is close to Mosquito's head ~ 0.5mm³ ?

Transistor Count Frequency # Cores Cache Size I/O Peak Bandwidth

Billion transistors at IC bottom (in the area $<1 \text{ cm}^2$) must be interconnected.

imec

Introduction

> Why low-k and why they are needed ?

- > ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

INTERCONNECT DELAY

Interconnects are needed in metals with low resistivity (Cu) and dielectrics with low dielectric constant (low-k).

Polarisability or porosity?

(Clausius-Mossotti equation)

$$\frac{k_r - 1}{k_r + 2} = P \cdot \frac{(k_1 - 1)}{(k_1 + 2)} + (1 - P) \cdot \frac{(k_s - 1)}{(k_s + 2)}$$

- Dielectric constant $k = \varepsilon / \varepsilon_o$ depends on molecular characteristics (polarisability α), and density (N).

- Molecular characteristics (α) allow changing the k-value in a limited range. Organic polymers have low frequency dispersion but hardly compatible with current ULSI technology.

- Therefore, more significant change of the k-value can be succeeded by changing density (pores)

➢ The k-value depends on porosity and dielectric constant of skeleton.
➢ Low k-value of skeleton → low k-value of the film at lower porosity.

Introduction

- > Why low-k and why needed ?
- ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

ITRS Roadmap

K=2.7 in 2012 instead of predicted k=1.7 in 2003: huge delay ?

Low-k materials (past and present)

- Organic polymers
- Organosilicate glasses
- Silsesquioxanes
- Zeolites
- Boron carbonitrides
- Fullerene
- MOFs

Organosilicate glasses

Compatible with ULSI technology:

- Properties similar to SiO2
- You can use traditional equipment
- Organic polymers: coefficient of thermal expansion
- Zeolites: intergranular voids
- Fullerenes: never shown reliable deposition (film formation)
- Silsesquioxanes: might be interesting for subtractive approach. Young Modulus is a problem
- Boron carbonitrides are still candidates for non-porous version of ULK (M. Paquette)
- Metal-Organic Frameworks (MOFs) might be candidates for subtractive integration

- Introduction
- > Why low-k and why needed ?
- ITRS roadmap and available low-k materials
- > Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

SiO2: SiH4 + O \rightarrow SiO4/2 + H2O Low-k: Si(CH3)4 + O \rightarrow (CH3)SiO3/2 + H2O

<u>Matrix</u> precursors are silane derivatives and siloxane derivatives and contain organic groups providing hydrophobicity of deposited films skeleton.

Porogens are used to generate porosity. A typical example of porogen is a-terpinen. Porogen must be degradable at T < 450C and leave minimum amount of residue after removal.

Deposition of low-k materials

Comparison of SiO2 and low-k materials

> CH3 groups reduce polarizability and density, makes material hydrophobic.

PECVD or Spin-on?

- SOG materials historically were first low-k materials. PECVD materials became more popular when A. Grill developed low-k PECVD deposition.
- Interest to SOG increased again because of difficulty of PECVD further scaling.
- Possibility of subtractive integration requests the gap filling capability and it increases interest to SOG materials.

Problems of the k-value scaling

- > Organosilicate glasses have matrix k-value close to SiO2.
- > Therefore only porosity introduction can reduce the k-value.
- Effects of porosity and terminal carbon:
- Degradation of mechanical properties
- Compatibility with barriers deposition
- Plasma damage
- Degradation of dielectric characteristics

Effect of carbon

- Terminal =Si-CH3 initiates hydrophobicity, increases plasma resistance reduces Cu diffusion but reduces Young Modulus.
- Non bonded residual carbon (porogen/template residue (sp2 Carbon, CHx) may improve plasma resistance but deteriorate electrical properties.

Young Modulus versus K-value

Pore size versus k-value. sealing

> Pore sealing technology is becoming extremely important

Diffusion of plasma species into pores

No gradient in gas phase:

 $C_{A} = C_{A_{S}}$

No [A] at a certain depth

 $C_{A1}=0$

T. V. Rakhimova et.al., " IEEE Trans. Plasma Sci. 37(9), 1697 (2009). M. Baklanov et al. J. APPL. PHYS. 113, 041101 (2013)

> Pore size increases with porosity, therefore plasma damage is becoming stronger

Breakdown field versus porosity and k-value

Porosity is of primary importance for breakdown.

> The chemical composition is also important: E is approaching to the values typical for organic polymers. Strong effect of adsorbed moisture.

- Introduction
- > Why low-k and why needed ?
- > ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

Roadmap and present selection

Low porosity of 2.55 OSG materials enables to minimize plasma damage and to achieve the smallest integrated k-value with reasonably good mechanical properties and reliability

Carbon bridged low-k films ?

- There is a clear interest to carbon bridged low-k materials in both PECVD and SOG because of expected improvement of mechanical properties.
- Some carbon bridged low-k materials form perfectly ordered pores (PMO). Successful examples are INTEL and some Universities.
- Some materials with carbon bridged materials form "no" or "limited" ordering with properties similar to PMO (A.Grill-PECVD, SBA Mat.-SOG, IBM Almaden-SOG)

SBA material

Preparation technique

PECVD versus self-assembling chemistry

- Self-assembling chemistry (PMO) enables better control the pore and skeleton structure in comparison with PECVD materials.
- More attention to PMO ?

Low-k materials: GENERAL roadmap

- Ultimate k value is that of air (k=1)
- Si-O bonds are replaced to less porous
- > To achieve k-values < 2.8 artificial porosity needs to be introduced
- > To improve mechanical properties cross linking is necessary

Self assembling chemistry gives a benefit

- Introduction
- > Why low-k and why needed ?
- > ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

INTERCONNECT'S BASIC REQUIREMENTS

- > Low R 🛛 replace Al by Cu
- Low C: replace SiO2 by low-k

 $C_{inttot} = C_{ILD} + C_{IMD} = 2l(\frac{\varepsilon_{ILD}}{AR} + \varepsilon_{IMD}AR)$

RC-Delay $\tau \propto RC_{introt}$

Power

$$P = \alpha C_{inition} V^2 f \propto C_{inition}$$

Crosstalk

Challenges:

- Plasma damage (etch strip, post CMP cleaning)
- Barrier thickness and deposition damage (metal penetration into pores and N2 plasma)

METAL ETCH VERSUS DAMASCENE

- Introduction of damascene technology was related to replacement of AI by Cu since AI is patterned by RIE while all efforts to apply RIE to Cu failed.
- The barrier layers are becoming comparable with low-k thickness and "kills" the expected benefits. The pore size doesn't allow efficient scaling of the barrier thickness

Large pore size and thin barriers are in conflict

What is more important: OSG k-value or barrier thickness ?
K = 2.55 for 10 and 7 nm technology nodes

- Introduction
- > Why low-k and why needed ?
- > ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

Metal: Wire resistance

Zs. Tokei, Spring MRS 2015

What is the pore size if low-k needs be sealed by 1 nm thick barriers ?

Mikhail R. Baklanov, NGC2017

Alternative metals

At 10nm CD a resistivity of <25 $\mu\Omega$ cm is competitive

Zs. Tokei. Spring MRS 2015

Intermediate conclusions

- The k-value scaling via porosity introduction degrades low-k properties: mechanical properties, plasma damage, barrier thickness and quality...
- The metal selection meets 2 contradictory problems:
- better R \rightarrow worse EM
- Better EM \rightarrow worse R

Prof. Iwai (ICSICT): Interconnect materials and methods are reaching the physical limit. Now approaches are needed

- Introduction
- > Why low-k and why needed ?
- > ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration

- Introduction
- > Why low-k and why needed ?
- > ITRS roadmap and available low-k materials
- Organosilicate glasses: PECVD and SOG.
- Low-k materials for 10 nm technology node and beyond
- Challenges of integration
- Barriers and conductors
- Innovative solutions for integration
- (pore stuffing, cryogenic etch, replacement low-k)

Routes for the integration technology

Present (damascene) technology

METAL ETCH VERSUS DAMASCENE

Damascene technology (dielectric etch)

What we need:

- Reduce pore size and porosity;
- Thin barriers compatible with porosity
- New metals
- Low damage patterning

130 nm – 3 nm technology node ?

Subtractive technology (metal patterning)

What we need:

- Patterned metal (Etch Al, Cu, select Ru)
- Low-k curing in narrow space

> 130 nm technology node < 10 nm technology node ?</pre>

Pore stuffing by polymers (P4 approach)

T. Frot et al. US patent T. Frot et al. (2011) *Adv. Mater.*, **23**(25), p. 2828. *T. Frot et al.* (2012) *Adv. Funct. Mater.*, **22**(14), p. 3043. *M. Heyne et al.* (2014) *J. Vac. Sci. Technol. B.*, **32**(6) p. 062202. *L.Zhang et al.* (2016) *J. Physics D: Appl. Phys. In press*

Pore stuffing by polymers (P4 approach)

Pristine k-value was 2.0

M. Baklanov et al, AVS 62th Symp, Oct 2015

Cryogenic etch

M. Baklanov et al. EU, US and Japan patents L. Zhang et al. (2013) ECS Solid State Lett., **2**, 2, p. 5. L. Zhang et al. (2013) ECS Sol. St. Sci. & Technol., **2**(6), p. N131.

Options for cryogenic etch

M. Baklanov et al. EU, US and Jap. patents

100 mm K=2.38 at k=2.31 for pristine

23 nm

Challenges:

M. Baklanov et al. Sol.St.Technol. 57, 5 (2014)

- > The reaction products condense at T < -120C.
- No available industrial etch equipment operating at so low-k temperature

Replacement low-k

Replacement low-k

• Patterning template, Metallization, Template removal and Gap-fill low-k deposition.

This approach does solve the two major challenges in conventional Cu/low damascene integration: *low-k plasma damage* and *metal penetration during barrier deposition* on porous structures.

Replacement low-k

- 1st integration lot, using a-Carbon as template and Spin-on low-k for gapfilling.
- Keff~2.39 is obtained on a 35nm gap. (integration $\Delta k < 0.1$ compared with pristine material.)

L. Zhang et al., APPL. PHYS. LETT. 107, 092901 (2015)

Conclusions

The key problem is large pore size of ultra low-k materials:

- Plasma damage -> huge degradation of dielectric constant and reliability
- Mechanical weakness -> do not survive during the packaging
- Electrical degradation -> leakage current, breakdown field, reliability
- Compatibility with barrier deposition
- Compatibility with damascene technology

Challenges and directions:

- Pore size and barrier thickness reduction -> selected for 10 and 7 nm technology nodes.
- Pore stuffing -> technology complication, limited protection against plasma damage, CTE...
- Cryogenic etch -> technology complication, barrier compatibility
- Pore sealing by SAM before metal barrier deposition and new barriers
- Subtractive integration: metal etch and low-k replacement: spin-on is important
- Selective deposition.