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2.1 m diameter dish 

antenna to communicate 

with Earth from 7.5 billion 

kilometers away 

Hot electron bolometers as direct detectors 

NEP ≈ 3×10 -13 W/√Hz 

bol ≈ 50 ps 

No photon shot noise in THz! 

are capable to detect aJ pulse energy at GHz rate 
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Why graphene (graphene based)?  

 

 

 

 

 

 

 

 

 

- Mostly because of higher mobility. 

- Peculiar spectrum leads to geometric control of bandstructure 

- Easy to fabricate 

New materials for THz detection 



Outline: 

 

 

1. Introduction.  

- Motivation 

- Asymmetric  structures. What does it mean? Asymmetric metallization 

 

2. Experiment: 

- Description of the samples 

- Response of the samples to radiation 

- Dependence of response on frequency and temperature 

 

3. Analysis of the results and possible mechanisms of response to radition 

 

4. Conclusions  



THz range is important for: 

- Security 

-   Medicine 

-     Astronomy 

-        Etc. 

Detectors. Why nanosturtures: 

- Sensitive  

- Fast 

- Energy efficient 

- Response controlled by gate  

- Etc.  

MOTIVATION 
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MOTIVATION 

Detectors. Why graphene (CNT) based: 
- High mobility 

- Geometric control of the band structure 

- Easy to fabricate! 

- Plasma waves 
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Plasmonics forms a major part of the fascinating field of 

nanophotonics, which explores how electromagnetic fields can 

be confined over dimensions on the order of or smaller than the 

wavelength. 
Plasmonics: Fundamentals and Applications 

Authors: Maier, Stefan Alexander 

Springer, 2007 
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We use simple one-step lithography combined with shadow evaporation and lift-off in 

order to make asymmetric devices. Contact doping leads to formation of a p-n 

junction 
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Asymmetric  structures. What does it mean? 

Graphene 
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Asymmetric  structures. What does it mean? 
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The devices are coupled to the radiation with a logarithmic spiral antenna. A device 

chip was fixed on a flat surface of a silicon lens. 

Main approach: we compare many varieties using same setup 
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We studied many different structures using pretty 

much the same setup, the same antenna and the same 

definition of responsivity. This allows for more or less 

direct comparison of different detector 

configurations 



The terahertz radiation provided by a two backward wave oscillators (140GHz, 300 to 

500 GHz) and used a gas discharge laser operating on a 2.5 THz H2O line. 
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Main approach: we compare many varieties using same setup 
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Asymmetric  structures. What do we get? Plain graphene vs GNRs 
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Asymmetric  structures. What do we get? Plain graphene vs GNRs 
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Change in frequency dependence of 

response probably indicates importance of 

the plasma waves in the channel 

Asymmetric  structures. What do we get? Plain graphene vs GNRs 
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Asymmetric  structures. What do we get? Plain graphene vs GNRs 
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Brief summery of the experimental data: 

- GNR exhibit smaller response 

- Low frequency response decreases as the temperature is lowered  

- Frequency dependence qualitatively changes as the temperature goes from 

300K to 77K 
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Asymmetric  structures. What do we get? Plain graphene vs GNRs 
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Brief summery of the experimental data: 

- GNR exhibit smaller response 

- Low frequency response decreases as the temperature is lowered  

- Frequency dependence qualitatively changes as the temperature 

goes from 300K to 77K 
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Photothermoelectric response Diode response 

Detection mechanisms. Photothermoelectric vs diode 
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Photothermoelectric response Diode response 

Detection mechanisms. Photothermoelectric vs diode 

∆𝑉 ≈ (𝑆n−𝑆p) ∙ ∆𝑇 
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Photothermoelectric response Diode response 

Detection mechanisms. Photothermoelectric vs diode 

∆𝑉 ≈ (𝑆n−𝑆p) ∙ ∆𝑇 
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Photothermoelectric response Diode response 

Detection mechanisms. Photothermoelectric vs diode 

∆𝑉 ≈ (𝑆n−𝑆p) ∙ ∆𝑇 
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Photothermoelectric response Diode response 

Photothermoelectric vs GNRs.  Frequency dependence 

In both cases response can be either suppressed or enhanced due to excitation of plasma 
waves in the channel.  

V. Ryzhii, M. Shur, JJAP, Vol. 45, No. 42, 2006, pp. L1118–L1120 
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Photothermoelectric response 

Diode response 

In linearized approximation in both cases you get 

VRESP ~ I0
2 

Photothermoelectric vs GNRs.  Frequency dependence 
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Photothermoelectric response 

Diode response 

In linearized approximation in both cases you get 

VRESP ~ I0
2 

V. Ryzhii, M. Shur, JJAP, Vol. 45, No. 42, 2006, pp. L1118–L1120 

Photothermoelectric vs GNRs.  Frequency dependence 
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Photothermoelectric response Diode response 

Photothermoelectric vs GNRs.  Frequency dependence 
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Graphene structures. Probing the scattering rate 
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Graphene structures. Probing the scattering rate 

The obtained data show that the elastic scattering rate is 

constant between 4 and 300 K while the 4probe resistance at 

low temperatures is enhanced due to weak localization 
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Photothermoelectric response Diode response 

Photothermoelectric vs GNRs.  Frequency dependence 
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Diode response. Role of the intrinsic barrier capacitance combined 

with plasmonic resonance 

𝑰 =  𝟏 𝑹𝑺𝑩
 ∙ 𝑽 + 𝜶𝑽𝟐 

Only RSB and α change 

with temperature 

Model suggested by V. Ryzhii, to be submitted in 2017 



NGC-2017 40 

Diode response. Role of the intrinsic barrier capacitance combined 

with plasmonic resonance 

𝑰 =  𝟏 𝑹𝑺𝑩
 ∙ 𝑽 + 𝜶𝑽𝟐 

Only RSB and α change 

with temperature 
R2D α, RSB 

CSB 

L2D 
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U0cos(ωt) 
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Model suggested by V. Ryzhii, to be submitted in 2017 
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Res freq = 3THz!!! 
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Diode response. Role of temperature at low frequency 

The diode symbol stands for the Schottky 

barrier with an I(V) dependence described by: 

𝑰 =  𝟏 𝑹𝑺𝑩
 ∙ 𝑽 + 𝜶𝑽𝟐 

The responsivity will be given by: 

 𝑹𝑺 = 
𝟏

𝟐
𝜶 ∙ 𝑹𝑺𝑩 ∙ 𝒁𝑨

−𝟏  

We can approximate current with the simple formula 

𝐼 𝑉 = 𝐼0 𝑇 ∙ 𝑒−
Φ−𝑒𝑉

𝑘𝑇 ; Using it we get: 

 

𝑅𝑆𝐵 =
𝑑𝐼

𝑑𝑉

−1
=

𝑘𝑇

𝑒
𝐼0(𝑇)

−1 ∙ 𝑒
Φ−𝑒𝑉

𝑘𝑇 ; grows as T goes down 

 

𝛼 =
1

2

𝑑2𝐼

𝑑𝑉2 =
𝑒2

𝑘𝑇 2 𝐼0 𝑇 ∙ 𝑒−
Φ−𝑒𝑉

𝑘𝑇 ; probably decreases as T goes down 

 

𝑅𝑠 ~ 𝑇
−1 ; inversely proportional to the temperature! 

R2D 

α, RSB 

CSB 
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Diode response. Why a Schottky barrier in a gapless material? 

Conduction Band 
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Diode response. Why a Schottky barrier in a gapless material? 

𝐸 𝑝 = 𝑣𝐹 𝑝𝑥2 + 𝑝𝑦2 = 
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Diode response. Why a Schottky barrier in a gapless material? 
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Diode response. Why a Schottky barrier in a gapless material? 
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Diode response. Why a Schottky barrier in a gapless material? 

R2D 

α, RSB 

CSB 

Normal electrons 
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Diode response. Why a Schottky barrier in a gapless material? 

R2D 

α, RSB 

CSB 

Normal electrons 

The diode symbol stands for the Schottky 

barrier with an I(V) dependence described by: 

𝑰 =  𝟏 𝑹𝑺𝑩
 ∙ 𝑽 + 𝜶𝑽𝟐 

The responsivity will be given by: 

 𝑹𝑺 = 
𝟏

𝟐
𝜶 ∙ 𝑹𝑺𝑩 ∙ 𝒁𝑨

−𝟏  

The responsivity will be given by: 

 𝑹𝑺 = 
𝟏

𝟐
𝜶 ∙ 𝑹𝑵 ∙ 𝒁𝑨

−𝟏  

𝛼 =
1

2

𝑑2𝐼

𝑑𝑉2 =
𝑒2

𝑘𝑇 2 𝐼0 𝑇 ∙ 𝑒−
Φ−𝑒𝑉

𝑘𝑇 ;  

probably decreases as T goes down 
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Diode response. Why a Schottky barrier in a gapless material? 

R2D 

α, RSB 

CSB 

Normal electrons 

Fraction of normal electrodes 

is LARGER in nanoribbons 

which explains smaller 

response in GNR devices  
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Summary 

ALL of the observed experimental data can be explained if we take 

into account: 

 

1. Unusual properties of the Schottky barrier in graphene 

2. Intrinsic capacitance of the barrier 

3. Plasmonic resonance in graphene channel 
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Summary 

Conclusions: 

 

1. Manifestation of plasmonic response in the detection of 

radiation 

2. Frequency dependence of the response is affected by plasma 

waves excitation FAR from the first plasmon resonance 

3. Unusual properties of the Schottky barrier in graphene 

explain: 

- The evolution of the response with temperature 

- Supression of the response in the GNR devices  
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Diode response. What’s the big deal? 

Regular Schottky diode operates 

up to a certain frequency 

 While plasma waves will help it to 

work in a wider frequency range 
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Diode response. What’s the big deal? 

Regular Schottky diode operates 

up to a certain frequency 

 While plasma waves will help it to 

work in a wider frequency range 
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Conclusions: 

 

1. Manifestation of plasmonic response in the detection of 

radiation 

2. Frequency dependence of the response is affected by plasma 

waves excitation FAR from the first plasmon resonance 

3. Unusual properties of the Schottky barrier in graphene 

explain: 

- The evolution of the response with temperature 

- Supression of the response in the GNR devices  

Results overview 
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