The charge transport mechanism and the nature of traps in charge trap flash, ReRAM and FeRAM devices

V.A. Gritsenko

Institute of Semiconductor Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

Outlook

- Motivation for the trap nature and charge transport understanding: flash and universal memory
- Defect and trap nature in Si₃N₄
- Defect and trap nature in Al₂O₃
- Defect and trap nature in HfO₂ and ZrO₂
- Defect and trap nature in Hf_{0.5}Zr_{0.5}O₂
- Conclusion

History of semiconductor business

Universal memory

Universal memory combine the advantage's of

- DRAM (high speed, high endurance >10¹⁶ circles)
- FLASH (non volatility)
- Hard disc (high density, low cost)

Candidates for Universal memory MRAM, FeRAM, ReRAM, PRAM

Scaling of flash memory

The substantional disadvantage of floating gate flash memory is parasitic interference during information writing.

Interefence results in low reliability of flash memory and restriction for scaling to increase memory volume > 64Gbite.

This disadvantage is overcame in charge trap memory based on Si₃N₄.

The advantages of the SANOS in comparison with SONOS

- The using of high-k dielectrics (with high dielectric constant) as blocking oxide lead to following advantages:
- 1) the increasing of electric field in the tunnel oxide lead to increasing of current injection (figure on the right hand). This property allows to use thicker tunnel oxide when the memory window is fixed, which can provide the larger retention time i.e. reliability and decrease of rejection rate of flash memory.
- the decreasing of voltage drop on the blocking oxide leads to decreasing of parasitic injection of electrons and holes form poly silicon gate during write/erase operations (see figure on the right hand)

Energy diagram of TANOS memory element

Mathematical model for simulation of flash devices memory properties and charge transport in high-k dielectrics

$$\begin{aligned} \frac{\partial n(x,t)}{\partial t} &= \frac{1}{e} \frac{\partial j(x,t)}{\partial x} - \sigma_r \upsilon n(x,t) (N_t - n_t(x,t)) + n_t(x,t) P^{(n)}(x,t) - \sigma_r \upsilon n(x,t) p_t(x,t) \\ \frac{\partial n_t(x,t)}{\partial t} &= \sigma \upsilon n(x,t) (N_t - n_t(x,t)) - n_t(x,t) P^{(n)}(x,t) - \sigma_r \upsilon p(x,t) n_t(x,t) \\ \frac{\partial p(x,t)}{\partial t} &= \frac{1}{e} \frac{\partial j_p(x,t)}{\partial x} - \sigma \upsilon p(x,t) (N_t - p_t(x,t)) + p_t(x,t) P^{(p)}(x,t) - \sigma_r \upsilon p(x,t) n_t(x,t) \\ \frac{\partial p_t(x,t)}{\partial t} &= \sigma \upsilon p(x,t) (N_t - p_t(x,t)) - p_t(x,t) P^{(p)}(x,t) - \sigma_r \upsilon p(x,t) n_t(x,t) \end{aligned}$$

$$\frac{\partial F}{\partial x} = -e \frac{(n_t(x,t) - p_t(x,t))}{\varepsilon \varepsilon_0}$$

$$P = \sum_{n=-\infty}^{+\infty} \exp\left[\frac{nW_{ph}}{2kT} - S \coth\frac{W_{ph}}{2kT}\right] I_n \left(\frac{S}{\sinh(W_{ph}/2kT)}\right) P_i(W_T + nW_{ph})$$
$$P_i(W) = \frac{eF}{2\sqrt{2m^*W}} \exp\left(-\frac{4}{3}\frac{\sqrt{2m}}{\hbar eF}W^{3/2}\right), \qquad S = \frac{W_{opt} - W_T}{W_{ph}}$$

nitride: experiment and simulation: Frenkel Model

K. A. Nasyrov, V. A. Gritsenko, M. K. Kim et. al, Charge Transport Mechanism in Metal-Nitride-Oxide Silicon Structures, IEEE Electron Device Letters, V. 23, p. 336, 2002.

Current-voltage characteristics of memory node-silicon nitride in TANOS: Multiphonon Model

V.A. Gritsenko, N.V. Perevalov, O.M. Orlov, G. Ya. Krasnikov, Nature of Traps Responsible for the Memory Effect in Silicon Nitride, Applied Physics Letters, v. 109, p. 06294, 2016

Photoluminescence of Si₃N₄

Nature of memory traps in silicon nitride of flash devices

Electron localization

Hole localization

S.S. Nekrashevich, V.V. Vasilev, A.V. Shaposhnikov, V.A. Gritsenko, Electronic structure of memory traps in silicon nitride, Microelectronic Engineering **86**, p.1866, 2009.

FIG. 5. (a) The energy diagram of electronic transitions in the Si–Si bond in Si_3N_4 associated with the UV PL. (b) A configuration diagram of the optical transitions related to the 2.4 eV green photoluminescence line in Si_3N_4 .

 $W_t^e = W_t^h = 1.4 \text{ eV}$ is equal to half of PL shift (5.2-2.4)/2=1.4 eV

V.A. Gritsenko, N.V. Perevalov, O.M. Orlov, G. Ya. Krasnikov, Nature of Traps Responsible for the Memory Effect in Silicon Nitride, Applied Physics Letteres, v. 109, p. 06294, 2016

Ptotoluminescence of Al₂O₃ exited by synchrotron radiation

Photoluminescence energy indicate on existence of oxygen vacancies in Al₂O₃

T.V. Perevalov, O.E. Tereshenko, V.A. Gritsenko, V.A. Pustovarov et. al, Oxygen Deficiency Defects in Amorphous Al₂O₃, J. Appl. Phys. v.108, p.013501, 2010.

Excitation spectra of oxygen vacancy in Al₂O₃

Luminescence Stokes shift 6.0-3.0=3.0 eV

Electron Energy Loss Spectroscopy of Al₂O₃

Experimental EELS spectra for a-Al₂O₃ (black line) and calculated one for α - and γ -Al₂O₃ with oxygen vacancy.

T.V. Perevalov, A.V. Shaposhnikov, V.A. Gritsenko, Electronic structure of bulk and defects α - and γ -Al₂O₃, Microelectronic Engineering, **86**, 1915, March, 2009. Configuration diagram of optical transition on oxygen vacancy in Al₂O₃

Polaron energy in Al_2O_3 is 1.5 eV

Current voltage characteristics of Al₂O₃: Multiphonon Model

Thermal trap energy Wt=1.5 eV (half of Stokes shift)

Current versus temperature in Al₂O₃

N. Novikov, V.A. Gritsenko, K.A. Nasyrov, Charge transport mechanism in amorphous alumina, Appl. Phys. Lett. v.**94**, p.222904, 2009.

ReRAM TaN/HfO_x-Ni

D. R. Islamov, V. A. Gritsenko , C. H. Cheng , A. Chin, Percolation conductivity in hafnium sub-oxides, Appl. Phys. Lett. v.105, p.262903, 2014

XPS of valence band in nonstoihiometric HfO_x

V.N. Kruchinin, V.Sh. Aliev, D.R. Islamov, T.V. Perevalov, V. A. Gritsenko Nanoscale Potential Fluctuation in Non-Stoichiometric HfOx and Low Resistive Transport in RRAM, Microelectronic Engineering v.147, p.165, 2015

Optical absorption in nonstoichiometric HfO_x and HfO_2

Nanoscale potential fluctuations in HfO_x

D.R. Islamov, V.A. Gritsenko , C.H. Cheng , A. Chin, Percolation conductivity in hafnium sub-oxides, Appl. Phys. Lett. v.105, p.262903, 2014

Photoluminescence of nonstoihiometric HfO_{x<2}

D. R. Islamov, V. A. Gritsenko, C. H. Cheng , A. Chin, Origin of traps and charge transport mechanism in hafnia, Appl. Phys. Lett. v.105, p.222901, 2014

Two band conduction in HfO₂

D.R. Islamov, V.A. Gritsenko, Appl. Phys. Lett. V99, p.672109, 2011

Two band conduction of HfO₂

Charge transport in HfO₂

D.R. Islamov, V. A. Gritsenko, C. H. Cheng , A. Chin, Origin of traps and charge transport mechanism in hafnia, Appl. Phys. Lett. v.105, p.222901, 2014

Frenkel effect

Frenkel model of coulomb trap J. Frenkel, Phys. Rev. **54**, 647, 1938

Multiphonon trap ionization

Phonon-assisted charge transport between neighbor traps

Phonon-assisted tunneling between traps

K.A. Nasyrov, V.A. Gritsenko, J. Appl. Phys. v.109, 093705, 2011.

Phonon-assisted charge transport

 $\blacksquare J = eN^{12}/3 P, @P = 2\sqrt{\pi}\hbar W \downarrow t /m^{*} s^{12} \sqrt{2}(W \downarrow opt - W \downarrow t) \exp(-W \downarrow opt - W \downarrow t /2kT) \exp(-2s\sqrt{m}^{*} W \downarrow t /\hbar) \sinh(eFs/2kT)$

where J – current density, e – electron charge, P – probability of electron tunneling between traps per second, W_t – trap thermal excitation energy, W_{opt} – of trap optical excitation energy, $s = N^{1/3}$ – distance between traps, N-trap concentration, k – the Boltzmann constant, F – electric field.

Trap assisted charge transfer

Blue (2.7 eV) photoluminescence band in ZrO₂

T.V. Perevalov, D.V. Gulyaev, V.S. Aliev, V.A. Gritsenko, The origin of 2.7 eV blue luminescence band in zirconium oxide, J. Appl. Phys. v.116, p.244109, 2014.

Photoluminescence excitation of 2.7 PL band in ZrO₂

Photoluminescence in Hf_{0.5}Zr_{0.5}O₂

D. R.Islamov, T. V.Perevalov,

V. A.Gritsenko et. al.,

Charge transport in amorphous $Hf_{0.5}Zr_{0.5}O_2$, Appl. Phys. Lett. v.106, p.102906, 2015.

Configuration diagram of oxygen vacancy and trap in HfO₂, ZrO₂ and Hf_{0.5}Zr_{0.5}O₂

Conclusion

- The memory effect in silicon nitride of TANOS is related to excess silicon, Si-Si bonds or Si clusters
- The defects responsible for the luminescence of amorphous Al₂O₃, HfO₂, ZrO₂, Hf_{0.5}Zr_{0.5}O₂ are oxygen vacancies
- The electron and hole traps responsible for the charge transport in amorphous Al₂O₃, HfO₂, ZrO₂, Hf_{0.5}Zr_{0.5}O₂ are oxygen vacancies

Thank You!