Tracking Charge Transport of Organic Semiconductor Material by Electronic Structure Measurement

大学共同利用機関法人 自然科学研究機構

National Conversity The Graduate University for Advanced Studies (Supersity) Satoshi Kera Institute for Molecular Science

解良 聡

Collaborators

Chiba Univ Prof. N. Ueno

Dr. F. Bussolotti (-> IMRE), low-E ARUPS
 Dr. J. Yang (-> China), low-E ARUPS
 Mr. T. Yamaguchi (-> IMS), low-E ARUPS, gasUPS
 Dr. K. Yonezawa (-> IMS), gas UPS
 Prof. S. Duhm (-> China) ARUPS, high-reso UPS
 Dr. Q. Xin (-> China), ARUPS, high-reso UPS
 Mr. S. Hosoumi, Gas UPS, high-reso UPS, calculation
 Mr. K. Sato, high-reso UPS, calculation
 Prof. H. Ishii, crystal
 Dr. Y. Nakayama (-> Tokyo Univ Sci), crystal, ARUPS
 Dr. S. Nagamatsu (Univ Elec-Comm), theory

IMS (BL7U)

Prof. K. Kimura (-> Osaka Univ), beamlineProf. K. Tanaka, beamlineDr. M. Matsunami (-> Toyota Inst Univ), beamline

<u>FUND</u> JSPS, MEXT KAKENHI

rubrene single crystal, since 2009

THANKS

OUTLINE

1. Key character of molecular solid

UPS band shape

2. Energy-band dispersion of molecule
 3. Electron-phonon coupling of HOMO band
 4. Character of quasiparticle state

Carbon based industrial

Rich Functionality

Semiconductor (LED, FET, PVC,..) Org.Condcut, Magnet, SuperCond. Mol.Recognition (Mol. Machine) Self-assemble, Self-healing Bio-mimic, etc

Characteristics of molecule

Rich degree of freedom (Structure, crystal, orbital) Intermolecular interaction (vdW) Charge localization (wavefunction) Molecular spin (Coordination)

Electronic structure

motivation

What is key differences by organic semicon. and inorganic counterpart?

Organic Semicon. Physics

Mechanism of energy-level alignment, charge transport

Surface & Interface

Message to device application Guideline of design to property

Carbon based industrial

How much does the wave-function spread change in the assembly?

= Molecular film functions are controlled by a weak interaction

motivation

What is key differences bw organic semicon. and inorganic counterpart?

Organic Semicon. Physics

Mechanism of energy-level alignment, charge transport

Surface & Interface

Molecular solid by vdW force: Physics based on isolated states

Origin of UPS band shape?

Electronic structure depends largely on molecular orientation even in <u>vdW solids</u>. Universal picture is requested for a conventional/trivial material to understand,...

SK, JESRP204,2 (2016)

(1) Weak intermolecular interaction → 2-face character: isolated vs aggregate
 (2) Low dimensional → "bumpy" state by molecular orbital
 (3) Very large & heavy complex with light elements → polaron phenomena

Intrinsic behavior of organic materials, but not of inorganic

UPS band shape

Tnag, Bussolotti, SK, Ueno, J. Phys. D: Appl. Physics (2017)

2. Energy-band dispersion of molecule
 3. Electron-phonon coupling of HOMO band
 4. Character of quasiparticle state

See an electron in molecular solid !

Tracking Charge Transport

 λ & t are measurable parameter by UPS

How does an electron look like? Transport charge in molecular film

挑戰

Easier to access for gas, well-ordered monolayers (anti- π stacking: small t)

 λ : reorganization energy

From ordered crystalline films and bulk single crystals (well- π stacking)

t: transfer integral

Theory: two boundaries

UPS fine features will be appeared upon charge-boson coupling

Theory: two boundaries

UPS fine features will be appeared upon charge-boson coupling

"Not hopping nor band transport"

ea'

Extend : electron-phonon coupling

Motion of charges is not simple: a dressed quasiparticles

Electron couples to phonons affects to localizability

Transient Localiztion Scenario Fratini et al, Adv. Funct. Mater. 26, 2292(2016)

Band dispersion : spectral function ???

Complicate vibronic coupling

Ciuchi et al, PRL106,166403(2011) "pentacene Theory"

Girlando et al, PRB 82, 35208 (2010) "rubrene Theory"

Innovation

Angle-resolved PES: band dispersion

UPS band width

Can we measure dispersion? How to prepare ?

HOMO-band dispersion of Rubrene Crystal

Band Mapping: E(k)

t = 0.11eV mfp > 2.1nm

$$m_{h}^{*}=0.65 m_{0}$$

 $\mu_{h}^{*} \sim 31 \text{ cm}^{2}/\text{Vs} @ 295\text{K}$
 $\mu_{band} = \frac{e\tau}{m^{*}} > \frac{e\hbar}{m^{*}W} \sim 20 \frac{m_{0}}{m^{*}} \frac{300}{T}$

1D tight-binding approximation

 $E_{\rm B} = E_{\rm c} - 2t\cos(bk_{\parallel})$ $b = 0.76 \,\rm nm$ transfer integral $t = 0.11 \,\rm eV$

$$m_{\rm h}^* = \frac{\hbar^2}{{\rm d}^2 E_{\rm B}/{\rm d}k_{\parallel}^2} = \frac{\hbar^2}{2tb^2} = 0.65 \pm 0.05 m_0$$

Evidence of band transport Highest mobility

small BZ (large lattice) gives smallest m* among organic solids

PRL 104 (2010) 156401

Institute for Molecular Science

Experiments: UVSOR (BL7U)

Low kinetic energy is requested to see the events

APPLE II undulator

Variable polarization, hv=6-40eV Modified Wadsworth monochlomater $E/\Delta E > 10,000$, spots ~50 x200 µm

Analyzer: MBS-A1 ∆R < 1meV, 6-axis 14K ~ 400K

Prof. S. Kimura "SAMRAI" system

Experiments: UVSOR (BL7U)

High-energy resolution
 Small irradiation spot

+ Low-energy excitation UPS

- 1) Bulk sensitive measurement
- 2) Higher photoelectron intensity
- 3) Low irradiation damage
- 4) High momentum resolution

Low-energy excitation UPS

What is a nature of **KINK** features of spectral band for organic crystal?

Phonon coupling: multimode

Collective nonlocal phonons crystal lattice vibration

Localized phonons intramolecular vibrations

Small energy (low THz) phonons

Girlando et al, Mater. Sci-Poland 22, 307 (2004) Hatch et al PRL104 (2010) in SI.

Large energy (high IR) phonons

Dynamic polarization of h⁺(e⁻) = impact of polaron depends on t / λ ratio

Phonon coupling: multimode

Dynamic polarization of $h^+(e^-)$ = impact of polaron depends on t / λ ratio

Phonon coupling: multimode

Dynamic polarization of $h^+(e^-)$ = impact of polaron depends on t / λ ratio

Innovation

_ kera@ims.ac.jp

Direct evaluation of λ_{reorg}

Solid vs Gas: Pentacene λ

Impacts of vib coupling: stacking

Local e-ph coupling effect

W= bandwidth

Kinks (CUT) in the band structure are related to high-freq phonon ~ intramolecular vibrations

Origin of kink structure: rubrene

"KINK" in the band dispersion at major energies of vibration coupling

Origin of kink structure: rubrene

HOMO mass renormalization

Does **KINK** feature give any important aspects?

Impact of phonons on UPS shape

Band dispersion is arranged by various Boson couplings

Collective phonon: Symmetric / Antisymm modes contribution, phonon dispersion?

Local phonon: Symmetric / Antisymm molecular vibrations, coherency?

UPS band shape shows an electron in molecular solids

Impact of phonons on UPS shape

Dressed states are differently appeared in the main band ($\lambda \& t$) Molecular vibration affects in any case

UPS band shape shows an electron in molecular solids

Design the crystal: BZ vs scattering

JPCL, 3, 3325 (2012)

Thermal Narrowing of the Electronic Bandwidths in Organic Molecular Semiconductors: Impact of the Crystal Thermal Expansion **t**: comparable for C_{2p} **m***, **mfp** = tune the properties, μ

Yuan Li, Veaceslav Coropceanu,* and Jean-Luc Brédas*^{,†}

Lattice thermal expansion (fluctuating t)

× Polaronic band narrowing upon heating (renormalization t) Holstein (1959) NOTE: for t< λ

Γ point gives lowest level (h⁺ transport)= less effects on scattering

Design the crystal: BZ vs scattering

Experiment:

Any other measurement to demonstrate

Theory: Adequate description of a charge in molecule

Valence Band

Lattice thermal expansion (fluctuating t)

× Polaronic band narrowing upon heating (renormalization t) Holstein (1959) NOTE: for t< λ

-0.8 M(M') Γ Z DOS M Y R (b) 2.4 E-E,(100 K) (eV) **Conduction Band** 2.2 100 K 100 K = 293 K 293 K 0.0 -0.4 DOS

Γ point gives lowest level (h⁺ transport) = less effects on scattering

Summary : rubrene SC

HOMO band "renormalization" caused by strong local e-ph (molecular vibration) and weak nonlocal e-ph (collective) coupling effects

"Kink" = UPS fine features "cut" & "bend" 110K ~320 K

- Phonon(vibration) coupling is crucial to charge transport (mfp and m*)
- **?** Does the spectrum represent <u>a specific coupling</u> instead of multiplicity ?

Design of chem structure (reorganization energy: molecular vibration and MO) and **BZ structure** (MO connection: t & phonon momentum, symmetry) is a key parameter to control the charge transport property *Architecture*"