UNIVERSITY OF TWENTE.

Hotwire-assisted Atomic Layer Deposition of Pure Metals and Metal Nitrides

Alexey Kovalgin

MESA+ Institute for Nanotechnology Semiconductor Components group

a.y.kovalgin@utwente.nl

Motivation

1. Materials

(chipworks.com)

Multi-gate transistor (chipworks.com)

Group III – Nitride TFTs

(S. Bolat et al. *Appl. Phys. Lett.* 2014)

2. Deposition method

High aspect ratio structures (e.g. memories) (chipworks.com)

Classic example of thermal ALD

 $-OH + TiCl_4 \rightarrow -OTiCl_3 + HCl$

Metallic TiN films

ALD:

C۱

- ✓ Self-limiting reactions
- Thickness control
- High aspect ratio structures

 $-TiCl + NH_3 \rightarrow -TiNH_2 + HCl$

Need for extra activation

ALD of AIN and GaN compared

Need for additional activation of NH₃ UNIVERSITY OF TWENTE.

Plasma-Enhanced ALD (PEALD)

2nd precursor: plasma on

ALD classification

Plasma versus Hot Wire

Plasma

- 1. Breaking molecules by electrons or excited species
- 2. Number of chemical reactions can be significant
- 3. lons are present => more reactions & charging
- 4. UV light emission

Hot Wire

- Catalytic dissociation by a 1. hot (1600-2000 °C) tungsten wire
- 2. Lower pressures possible
- No UV our study: Hot-wire assisted Number of reactions is 3.
- 4.
- 5.

- Motivation
- Hotwire-Assisted Deposition:
 - Confirmation of the Presence of Atomic Hydrogen
 - HWALD of Tungsten (W) Films
 - On the Growth of Titanium (Ti) Films
 - Confirmation of the Presence of Nitrogen radicals
 - On the Growth of Aluminum Nitride (AIN) Films
- Conclusions

HWALD: Which radicals can be formed?

Confirmation of the Presence of Atomic Hydrogen

Reactor details

Is at-H delivered to the wafer surface?

- Atomic hydrogen reacts with Te surface producing TeH₂:
 - 2H + Te(s) \rightarrow TeH₂(g) \rightarrow etching Te film
- There is no reaction between *molecular* hydrogen and Te.

Real-time monitoring of Te etching

The etching of Te was real-time monitored by insitu SE

- (1) Introducing H₂, **FILAMENT OFF**
- (2) Stop introducing H₂, heat up the filament
- (3) Introducing H₂ with **FILAMENT ON**

Thickness verification by SEM

UNIVERSITY OF TWENTE.

12

Bridge to Hot Wire ALD (HWALD)

Delivering atomic-H goes easily

HWALD of Tungsten (W) Films

In-situ SE monitoring

- Sequential pulses of WF₆ and at-H
- Well-defined ALD window can be found

Yang et al., *Thin Solid Films,* https://doi.org/10.1016/j.tsf.2017.12.011

UNIVERSITY OF TWENTE.

70

Growing either α - or β -phase W possible

Resistivity

Film thickness: 10-12 nm RMS: 1.4 nm

✓ Resistivity:

Resistivity mapping

- 100 $\mu\Omega$ ·cm, β -phase
- 15 $\mu\Omega$ ·cm, α -phase

HWALD: On the Growth of Titanium (Ti) Films

(Let's replace WF₆ by TiCl₄ while keeping at-H)

Reference: ALD of TiN by TiCl₄/NH₃ pulses

TiCl₄/H/NH₃ pulses

H. Van Bui et al.: ECS journal of solid state science and technology 2 (4) P149-P155 (2013).

TiCl₄/H pulse sequence

 H reduces –Cl groups, releasing HCl and leaving dangling bonds…

Case #1: H atoms occupy dangling bonds

→ Would be great... but: 10⁻⁷ mbar of residual H₂O

UNIVERSITY OF TWENTE.

Case #2: O atoms occupy dangling bonds

→ TiO_2 will continue growing but very slowly as it is limited by the supply of H_2O

It does work for W... Why not for Ti, Al, ...?

WO_x can be reduced by at-H to metallic W whereas TiO₂ and Al₂O₃ cannot

HWALD: Which radicals can be formed?

On the Presence of Nitrogen Radicals

N-radicals delivered in line of sight

Towards AIN: HW in line-of-sight

Conclusions

- ALD = self-limiting surface reactions => advantages
- Additional means to supply energy sometimes required
- HW can (to some extent) replace plasma:
 - Generation of at-H confirmed by etching of Te films
 - at-H: delivery in both *in* and *out* of *line-of-sight* possible
 - Generation of Nitrogen radicals confirmed by nitridation of Si
 - Nitrogen radicals: delivery in line-of-sight only
 - Obviously (residual) oxidants can also be activated by HW
 - Metal oxidation and reduction of the oxides should be taken into account
- HWALD enables (so far):
 - Area-selective growth of high-qiality W using WF₆/at-H
 - Deposition of TiO_x using TiCl₄/at-H
 - Deposition of AIN_yO_z using TMA and NH₃ via HW

Many thanks to:

-

CONDUCTOR

COMPONENTS

- Mengdi Yang (PhD student HWALD W)
- Sourish Banerjee (PhD student AIN/GaN ALD)
- Hao Van Bui (graduated PhD student Te etching, TiN ALD)
- Ramazan Oguzhan Apaydin (PhD student BN)
- Tom Aarnink (technical support of deposition tools)
- Rob Wolters (discussions)
- Jurriaan Schmitz (discussions)
- Dirk Gravesteijn (discussions)
- Mark Smithers, Gerard Kip (MESA+) for SEM and XPS analyses.
- This work is financially supported by the Netherlands Organization for Scientific Research (NWO) and ASM International.

Thank you for your attention!

