Hotwire-assisted Atomic Layer Deposition of Pure Metals and Metal Nitrides

UNIVERSITY OF TWENTE.

Alexey Kovalgin

MESA+ Institute for Nanotechnology
Semiconductor Components group
a.y.kovalgin@utwente.nl
Motivation

1. Materials

CMOS backend: seed layers & barriers

(Chipworks.com)

2. Deposition method

Group III – Nitride TFTs

High aspect ratio structures (e.g. memories)

(Chipworks.com)
Classic example of thermal ALD

Metallic TiN films

ALD:
✓ Self-limiting reactions
✓ Thickness control
✓ High aspect ratio structures

\[\text{OH} + \text{TiCl}_4 \rightarrow \text{O} \text{TiCl}_3 + \text{HCl} \]

\[\text{TiCl} + \text{NH}_3 \rightarrow \text{TiNH}_2 + \text{HCl} \]

Courtesy of Hao Van Bui
Need for extra activation

$M(\text{CH}_3)_3$

ALD of AlN and GaN compared

$M = \text{Al, Ga}$

CH_3

CH_4

NH_3

Readily occurs for Al, difficult for Ga

UNIVERSITY OF TWENTE.
Plasma-Enhanced ALD (PEALD)

1st precursor: plasma off

2nd precursor: plasma on
ALD classification

Atomic Layer Deposition

Thermal

Radical-Enhanced

PEALD

Making radicals w/o plasma?

Purpose: Hot-wire generated radicals (H, NHₓ, ...) for ALD w/o plasma

Cat. dissociation of H₂ on hot tungsten filament

Plasma versus Hot Wire

Plasma

1. Breaking molecules by electrons or excited species
2. Number of chemical reactions can be significant
3. Ions are present => more reactions & charging
4. UV light emission

Hot Wire

1. Catalytic dissociation by a hot (1600-2000 °C) tungsten wire
2. Lower pressures possible
3. Number of reactions is limited
4. No ions
5. No UV

Our study: Hot-wire assisted ALD (HWALD)
Outline

- Motivation

- Hotwire-Assisted Deposition:
 - Confirmation of the Presence of Atomic Hydrogen
 - HWALD of Tungsten (W) Films
 - On the Growth of Titanium (Ti) Films
 - Confirmation of the Presence of Nitrogen radicals
 - On the Growth of Aluminum Nitride (AlN) Films

- Conclusions
HWALD: Which radicals can be formed?
Confirmation of the Presence of Atomic Hydrogen
Reactor details

Is at-H delivered to the wafer surface?

- *Atomic* hydrogen reacts with Te surface producing TeH$_2$:

 $$2H + Te(s) \rightarrow TeH_2(g) \rightarrow$$ etching Te film

- There is no reaction between *molecular* hydrogen and Te.
Real-time monitoring of Te etching

The etching of Te was real-time monitored by in-situ SE

1. Introducing H₂, **FILAMENT OFF**
2. Stop introducing H₂, **heat up the filament**
3. Introducing H₂ with **FILAMENT ON**

Thickness verification by SEM

Etching of Te by H-pulses

Bridge to Hot Wire ALD (HWALD)

![Graph showing Te thickness over time with H-on and H-off periods.]

Te thickness (nm)

Time (min)
Delivering atomic-H goes easily

Horizontal HW

- Reactor 2
- Few ml

Vertical HW (line-of-sight)

- Reactor 3
- Few ml

UNIVERSITY OF TWENTE.
HWALD of Tungsten (W) Films
In-situ SE monitoring

- Sequential pulses of WF$_6$ and at-H
- Well-defined ALD window can be found

One ALD cycle:
1. at-H
2. Purge
3. WF$_6$
4. Purge
Properties of W

✓ High purity

✓ Excellent step coverage

Crystallinity

Growing either α- or β-phase W possible

![X-ray diffraction patterns of α- and β-phase W](image)

2Theta (degree)

Intensity (Arbitrary unit)

- Red: α-W
- Black: β-W

Resistivity

Film thickness: 10-12 nm
RMS: 1.4 nm

µΩ·cm

14.8
14.9
15.0
15.0
15.2

✓ Resistivity:
- 100 µΩ·cm, β-phase
- 15 µΩ·cm, α-phase

Resistivity mapping

Resistivity (Ohm·cm)² vs. Position

HWALD: On the Growth of Titanium (Ti) Films

(Let’s replace WF₆ by TiCl₄ while keeping at-H)
Reference: ALD of TiN by TiCl$_4$/NH$_3$ pulses

TiCl$_4$/H/NH$_3$ pulses

Surface passivation by a-Si

43 at.% Ti

25 at.% N

35 at.% O (was 3-5 %)

Base pressure 2×10$^{-7}$ mbar

Arrival of contaminants: 0,1 monolayer/s

TiCl₄/H pulse sequence

- H reduces –Cl groups, releasing HCl and leaving dangling bonds…

Case #1: H atoms occupy dangling bonds

→ Would be great...
 but: 10⁻⁷ mbar of residual H₂O

Case #2: O atoms occupy dangling bonds

→ TiO₂ will continue growing but very slowly as it is limited by the supply of H₂O
It does work for W...
Why not for Ti, Al, ...?

WO_x can be reduced by at-H to metallic W whereas TiO_2 and Al_2O_3 cannot
HWALD: Which radicals can be formed?

On the Presence of Nitrogen Radicals
N-radicals delivered in line of sight

Real-time SE acquisition

Nitridizing Si wafer

- HW off
- HW horizontal
- HW vertical

![Graph showing thickness over time for different hardware configurations](image)

Adv. Mater. Interfaces 2017, 1700058
Towards AlN: HW out of line-of-sight

Atomic %

Sputter time (min)

Towards AlN: HW out of line-of-sight

Adv. Mater. Interfaces 2017, 1700058

Horizontal HW

NH₃

350 °C

Wafer

UNIVERSITY OF TWENTE.
Towards AlN: HW in line-of-sight

(b) HW on - 1800 °C

Atomic %

O\textsubscript{1s} 60

Al\textsubscript{2p} 40

N\textsubscript{1s} 20

Si\textsubscript{2p}

Sputter time (min)

350 °C Wafer

Adv. Mater. Interfaces 2017, 1700058
Conclusions

- ALD = self-limiting surface reactions => advantages
- Additional means to supply energy sometimes required
- HW can (to some extent) replace plasma:
 - Generation of at-H confirmed by etching of Te films
 - at-H: delivery in both in and out of line-of-sight possible
 - Generation of Nitrogen radicals confirmed by nitridation of Si
 - Nitrogen radicals: delivery in line-of-sight only
 - Obviously (residual) oxidants can also be activated by HW
 - Metal oxidation and reduction of the oxides should be taken into account

- HWALD enables (so far):
 - Area-selective growth of high-quality W using WF$_6$/at-H
 - Deposition of TiO$_x$ using TiCl$_4$/at-H
 - Deposition of AlN$_y$O$_z$ using TMA and NH$_3$ via HW
Many thanks to:

- Mengdi Yang (PhD student – HWALD W)
- Sourish Banerjee (PhD student – AlN/GaN ALD)
- Hao Van Bui (graduated PhD student – Te etching, TiN ALD)
- Ramazan Oguzhan Apaydin (PhD student – BN)
- Tom Aarnink (technical support of deposition tools)
- Rob Wolters (discussions)
- Jurriaan Schmitz (discussions)
- Dirk Gravesteijn (discussions)
- Mark Smithers, Gerard Kip (MESA+) for SEM and XPS analyses.
- This work is financially supported by the Netherlands Organization for Scientific Research (NWO) and ASM International.
Thank you for your attention!