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A	mul$scale	modeling	pla<orm		
•  Connects	atomic	material	proper@es	to	electrical	device	characteris@cs	
•  Focus	on	novel	materials,	charge	and	ion	transport,	and	structural	
changes,	consistently	modeled	in	a	friendly	environment	

•  kMC	descrip@on	to	account	for	variability	and	reliability	
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Ginestra™	Physics	
•  Novel	devices	(e.g.	memories,	neuromorphic	compu@ng)	need	to	
account	for	structural	material	changes,	ion/vacancy	migra@on,	
individual	species	contribu@on,	ferroelectric	effect,	phase	change,	…		



Ginestra	TAT	charge	transport	models	

L.	Vandelli	et	al.,	TED	58,	2011	-	L.	Larcher,	TED	50,	2003	

•  Mechanisms:	DT	and	FN	tunnel,	DD,	
Poole-Frenkel,	TE,	hopping,	Trap-
Assisted	Tunneling	(TAT)	

•  Defects	(oxygen	vacancies)	assist	
trap-assisted-tunneling	(TAT)	

•  Electron-phonon	coupling	and	la]ce	
relaxa@on	included	



Power	dissipa$on	&	temperature	increase	
•  3D	power	dissipa@on	map	calculated	from	the	

power	released	at	every	defects	by	TAT	electrons	and	within	
the	conduc@on/valence	band	

•  3D	temperature	map	calculated	by	solving	the	heat	Fourier	
equa@on	with	imposing	appropriated	boundary	condi@ons	

L.	Vandelli	et	al.,	IMW	2011		-	L.	Vandelli	et	al.,	IEDM	2011	–	L.	Larcher	et	el.,	IEDM	2012	
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Stress-induced	structural	material	changes	
•  Genera@on	of	vacancies	(O)	and	inters@@al	ions	(O,	H,	..)	due	

to	atomic	bond	breakage	induced	by:	
–  Temperature	and	field	driven	(thermochemical	model)	
–  Precursors	and	defect	assisted	defect	genera@ons	
–  Electron	injec@on	and	impact	ioniza@on	
– Material	morphology	(grain	vs	GBs)	

L.	Vandelli	et	al.,	TED	2013	

TDDB	in	HfOx	devices	



Stress-induced	structural	material	changes	
•  Phase	changes,	including	ferroelectric	
•  Morphology:	e.g.	GBs	and	grains	
•  Diffusion	of	O	ions	and	vacancies	

–  depends	on	field,	temperature,	morphology,	stoichiometry,	
cohesion/isola@on	forces	
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•  Goal:	connect	material	proper@es	to	the	electrical	device	opera@ons:	
from	charge	transport,	to	forming,	switching	and	reliability	

G.Bersuker	et	al,	JAP	2011	–	L.	Larcher	et	al.,	IEDM	2012	

RRAM	modeling	purposes	



Preforming	current	simula$ons	-	HfOx	
•  TAT	current	assisted	by	O	vacancies		

on	grains	and	(mostly)	GBs	-	CAFM	

•  T	&	V	dependence	across	large	area	
MIM	cap	with	different	
stoichiometry	

O.	Pirroia	et	al.,	JAP	2013	–	A.	Padovani	et	a.,	EDL	2013	

TiN/Ti/	5nm	HfOx/TiN	 Si 



HfOx	RRAM	forming	simula$ons	
•  Mul@ple	grains	and	GB	spots	included:	abrupt	current	

increase	due	to	a	single	spot	that	gets	converted	into	the	CF		
•  Forming	involves	breakage	of	Hf-O	bonds,	and	out-diffusion	of	

released	O	ions:	dominant	mechanism	assisted	by	electron	
injec@on	and	preexis@ng	vacancies	
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L.	Vandelli	et	al.,	IEEE-IMW,	2011		-	L.	Larcher	et.	al.,	Journ.	on	Comp.	El.,	2013	
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Genera$on	of	O	vacancies	&	ions	in	HfO2	
•  Electron	injec@on	&	

preexis@ng	O	vacancies	
reduce	the	ac@va@on	
energy	for	defect	crea@on	
in	their	proximity		

Frenkel	pair	forma@on	energy	
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D.	Gao	et	al.,	PRB	20015;	S.	R.	Bradley	et	al.,	Physical	Review	Applied	4,	064008	(2015)		



L.	Vandelli	et	al.,	IEEE-IMW,	2011	
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HfOx	RRAM	forming	kine$cs	simula$ons	



•  Accurate	simula@on	of	
forming	voltage	VF	and	
TDDB	distribu@ons	

•  Temperature	and	voltage	
dependences	correctly	
reproduced	

B.	Butcher	et	al.,	A.	Padovani	et	al.,	IMW	2012	-	A.	Kalatarian	et.	al.,	IRPS	2012		

HfOx	RRAM	forming	simula$ons	



HfOx	RRAM	reset	simula$ons	

L.	Vandelli	et	al.,	IEEE-IMW,	2011	
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•  ILRS	due	to	electron	dri?	
through	O	vacancy	sub-band		

•  Lognormal	IHRS	distribu@on	due	
to	a	∼1-2nm	barrier	thickness	
depending	on	Vreset	

F.	Puglisi	et	al.,	ICICDT	2013	-		L.	Larcher	et	al.,	2014,	TED	-	G.	Bersuker	et	al.,	JAP	2011	

LRS	-	HRS	current	distribu$on	-	HfOx		



Current	fluctua$ons:	RTN	
•  Mul@-level	RTN	signal	decomposed	into	two-level		signals	through	

FHMM	
•  Rela@ve	current	fluctua@ons	higher	in	HRS	compared	to	LRS		
•  RTN	in	HRS	due	to	the	ac@va@on/deac@va@on	of	defects	

suppor@ng	TAT	

D.	Veksler	et	al.,	IEDM	2012	
F.	Puglisi	et	al.,	ESSDERC	2012,	IRPS	2014,	IRPS2015	

Time	[s]	



HRS	RTN	physical	mechanisms	
•  Trap	ac@va@on/deac@va@on	due	to	2	different	mechanisms	

–  Coulomb	blockade	due	to	trapping	in	adjacent	slower	traps	(O	ions)	
–  Metastable	states	of	O	vacancies	

F.	Pugliese	et	al.,	IRPS	
2015	,	TED	2015	
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•  Pulse	regime	proposed	for	a	more	gradual	change	of	CF/
interface	proper@es	for	analog	conductance	modula@on	

•  Forming	simula@ons	to	determine	ini@al	O/Vo	distribu@ons	

HfOx	RRAM	under	pulse	switching	regime	

6nm	HfOx	

Ti	

TiN	

TiOx	

ICC=20uA	
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Pulsed	SET	simula$ons	in	HfOx	RRAM	
•  Simula@ons	explain	current	trend	vs	pulse	set	voltage	and	@me			

exp	

sim	

pulse	
voltage		
width		

pulse	
voltage	
amplitude	

EDL	data	–	collabora@on	with	Prof.	Hwang’s	group,	Postech	



•  The	first	voltage	pulse	creates	Vo-O	pairs	due	to	the	high	field:	the	
most	of	the	CF	is	reconstructed	a?er	the	first	pulse,	explaining	the		
abrupt	current	increase		

•  Subsequent	pulses	do	not	affect	significantly	the	CF	
O	ions	 O	vacancies	

VSET	=	1V	

Pulsed	SET	simula$ons	in	HfOx	RRAM	

Unpublished	data	–	collabora@on	with	Prof.	Hwang’s	group,	Postech	
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•  Reset	is	much	more	gradual	than	set	due	to	O	ion	diffusion	
•  The	CF	rupture/oxida@on	is	controlled	by	the	O	ion	supply	–	it	more	
gradual	compared	to	bond	breakage	(no	field/temperature	feedback)	

Pulsed	RESET	simula$ons	in	HfOx	RRAM	
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AlOx-HfOx	RRAM	for	analog	switching	
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•  AlOx-HfOx	stacks	show	a	linear	current	increases	with	
subsequent	pulses,	more	suitable	for	neuromorphic	devices	

•  Field	redistribu@on	across	two	layers	(one	has	to	be	very	
thin)	allows	to	beier	control	O	ion	supply,	enabling	a	more	
gradual	modula@on	of	CF	conductance	

H.	Hwang	et	al,	EDL,	2016		
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Analog	switching	in	TiOx/TaOy	RRAM	
•  Simula@on	of	Ti/35nmTiOx/2nmTaOy/TiN	RRAM	shows	that	

the	quasi-linear	resistance	changes	during	poten@a@on	and	
depression	are	due	to	the	higher	control	on	the	O	ion	
supply,	i.e.	diffusion	into	switching	and/or	O	reservoir	layers	
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Conclusions	
•  Dynamic	simula@on	plaBorm	connec@ng	material	proper@es	to	
electrical	device	performances	essen@al	to	engineer	novel	
memories	and	neuromorphic	compu@ng	devices	

•  Same	approach	allows	targe@ng	selectors	(OTS,	tunneling	
barriers),	ferroelectric	memories,	PCM,	…	

www.mdlso?.com	
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RRAM	technology	issues	
•  Selector	for	cross-bar	

and	3D	integra$on		
•  Analog	switching	for	

neuromorphic	
•  Variability	&	RTN	
•  Full	understanding	

missing	
–  VRESET		>	VSET	

–  O	ion	reservoir	
–  High	endurance	


