Применение нанотехнологий для повышения фото - и радиационной стойкости материалов космических аппаратов

NGC2017 Nano and Giga Challenges in Electronics, Photonics and Renewable Energy Current Trends in Radiophysics.

Лаборатория Радиационного и космического материаловедения

ЗАВЕДУЮЩИЙ ЛАБОРАТОРИЕЙ: Д.Ф.-М.Н., ПРОФЕССОР МИХАЙЛОВ МИХАИЛ МИХАЙЛОВИЧ

ТЕЛ.: (3822) 70-15-96

E-MAIL: MEMBRANA2010@MAIL.RU

Цель работы

• Выполнение исследований, направленных на применение нанотехнологий для увеличения фото- и радиационной стойкости материалов космических аппаратов.

Терморегулирование космических аппаратов

Из суммарных внешних поверхностей космических аппаратов (КА) значительную часть занимают покрытия системы терморегулирования. Они наносятся на специально изготовленные радиаторы, корпуса КА, системы АФУ и отдельные блоки. Температура КА определяется из равенства поступающего и излученного тепловых потоков.

В начале полета КА температура определяется выражением (1).

$$T = k \left(\frac{a_s}{\varepsilon}\right)^{1/4} \tag{1}$$

$$a_s=1-
ho_s=1-rac{\int_{\lambda_1}^{\lambda_2}
ho_\lambda I_\lambda d\lambda}{\int_{\lambda_1}^{\lambda_2}I_\lambda d\lambda}$$
 (2) $a_s=1-rac{\int_{\lambda_1}^{\lambda_2}
ho_\lambda I_\lambda d\lambda}{\int_{\lambda_1}^{\lambda_2}I_\lambda d\lambda}$ (2) $a_s=1-rac{\int_{\lambda_1}^{\lambda_2}
ho_\lambda I_\lambda d\lambda}{\int_{\lambda_1}^{\lambda_2}I_\lambda d\lambda}$ (3) $a_s=1-rac{\int_{\lambda_1}^{\lambda_2}
ho_\lambda I_\lambda d\lambda}{\int_{\lambda_1}^{\lambda_2}I_\lambda d\lambda}$ (4) $a_s=1-rac{\int_{\lambda_1}^{\lambda_2}
ho_\lambda I_\lambda d\lambda}{\int_{\lambda_1}^{\lambda_2}I_\lambda d\lambda}$ (5) $a_s=1-rac{\int_{\lambda_1}^{\lambda_2}
ho_\lambda I_\lambda d\lambda}{\int_{\lambda_1}^{\lambda_2}I_\lambda d\lambda}$

$$\varepsilon = \frac{\int_0^\infty \varepsilon_\lambda S_\lambda d\lambda}{\int_0^\infty S_\lambda d\lambda} \tag{3}$$

ρ_s – интегральный коэффициент отражения ТРП

 ε_{λ} — спектральная излучательная способность

 S_{λ} – спектр излучения абсолютно черного тела

В процессе полета под действием излучений и других факторов КП интегральный коэффициент поглощения a_s изменяется (Δa_s) в результате образования дефектов и полос поглощения, определяющих изменение спектров отражения покрытий. Излучательная способность є, как правило, не изменяется. Поэтому температура КА увеличивается или уменьшается в зависимости от типа покрытия.

Физические условия в космическом пространстве

- В КОСМИЧЕСКОМ ПРОСТРАНСТВЕ НА МАТЕРИАЛЫ ВНЕШНИХ ПОВЕРХНОСТЕЙ РАЗЛИЧНЫХ
- ОБЪЕКТОВ ДЕЙСТВУЕТ КОМПЛЕКС ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ.
 ПО НАЛИЧИЮ ТИПОВ И КОНЦЕНТРАЦИЙ ИЗЛУЧЕНИЙ КОСМИЧЕСКОЕ ПРОСТРАНСТВО УСЛОВНО МОЖНО РАЗДЕЛИТЬ НА ТРИ ЗОНЫ:
- ОКОЛОЗЕМНОЕ КОСМИЧЕСКОЕ ПРОСТРАНСТВО;
- ЗОНА РАДИАЦИОННЫХ ПОЯСОВ ЗЕМЛИ;
- МЕЖПЛАНЕТНОЕ КОСМИЧЕСКОЕ ПРОСТРАНСТВО.
- В ЭТИХ ЗОНАХ ДЕЙСТВУЕТ ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ СОЛНЦА (ЭМИ), ПЛАЗМА РАЗЛИЧНОГО СОСТАВА И КОНЦЕНТРАЦИИ (ИОНОСФЕРНАЯ, СОЛНЕЧНЫЙ ВЕТЕР, В ЗОНЕ РАДИАЦИОННЫХ ПОЯСОВ ЗЕМЛИ), ЭЛЕКТРОНЫ, ПРОТОНЫ, РЕНТГЕНОВСКИЕ И ГАММА КВАНТЫ И ЗАРЯЖЕННЫЕ ЧАСТИЦЫ ИМЕЮТ ШИРОКИЕ СПЕКТРЫ ЭНЕРГИЙ, ПРОСТИРАЮЩИЕСЯ ОТ ЕДИНИЦ ДО 10⁸ ЭВ.
- НА КОНКРЕТНЫХ ОРБИТАХ РАССЧИТЫВАЮТ СПЕКТРЫ ЭТИХ ЧАСТИЦ, КОТОРЫЕ С КАКИМ-ТО ПРИБЛИЖЕНИЕМ ИМИТИРУЮТ ПРИ НАЗЕМНЫХ ИСПЫТАНИЯХ МАТЕРИАЛОВ КОСМИЧЕСКОЙ ТЕХНИКИ. НА РИСУНКАХ 1 И 2 В КАЧЕСТВЕ ПРИМЕРА ПРИВЕДЕНЫ СПЕКТРЫ ЭЛЕКТРОНОВ И ПРОТОНОВ НА ГЕОСТАЦИОНАРНОЙ (R=36000 КМ, УГОЛ НАКЛОНА В ПЛОСКОСТИ ОРБИТЫ 0 ГРАДУСОВ) И ВЫСОКОЭЛЛИПТИЧЕСКОЙ (R1=400 KM, R2=40 000 KM, УГОЛ НАКЛОНА 60 ГРАДУСОВ).

Дифференциальные спектры протонов и электронов 6 на геостационарной и высокоэллиптической

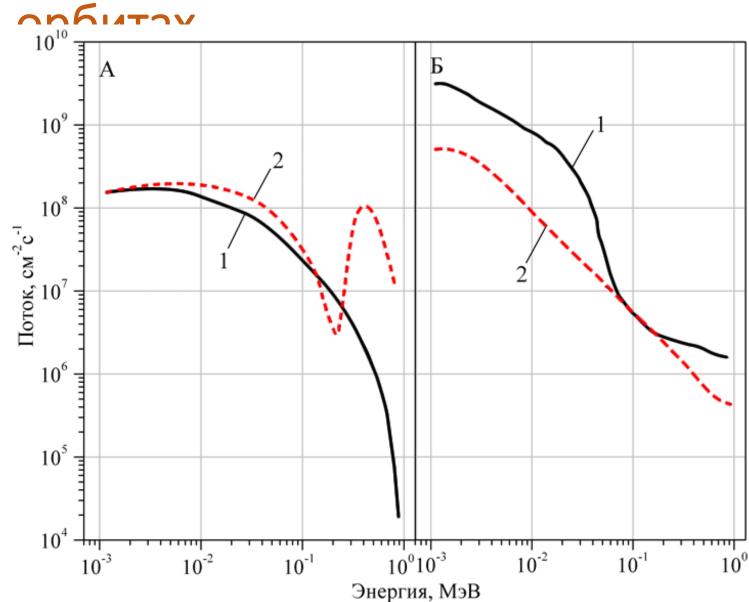


Рисунок 1. Дифференциальные энергетические спектры протонов (А) и электронов (Б) на геостационарной (1) и высокоэллиптической (2) орбитах.

Образование фото- и радиационных дефектов в полупроводниковых и диэлектрических материалах

Под действием излучений КП дефекты в полупроводниковых и диэлектрических материалах образуются в результате смещения атомов из узлов кристаллических решеток и ионизационных процессов.

Смещение может осуществляться за счет столкновения с атомами протонов и других тяжелых частиц с энергией достаточной для осуществления такого процесса. Другим механизмом смещения является ионизационный при котором атомы вытягиваются из узлов решеток локальными электрическими полями, образованными в результате внешних воздействий.

Ионизационные процессы происходят при энергии квантов или заряженных частиц больше ширины запрещенной зоны неорганических соединений или энергии разрыва связей в полимерных диэлектриках.

Расчеты показывают, что для смещения катионов оксидов металлов и сложных соединениях на их основе требуется большая энергия ускоренных электронов. Например, для смещение атома Zn в решетки ZnO необходима энергия 900 кэВ. Поэтому, в соответствии со спектрами электронов в КП (например, в зоне радиационных поясов Земли), основным процессом взаимодействия электронов с материалами КА является ионизационный.

Под действием протонов КП одновременно действуют оба механизма: смещение и ионизация. При малых энергиях протонов основные потери определяются смещением, при больших энергиях — ионизацией. Вклад этих составляющих будет определяться типом соединений. Например, для ZnO равенство потерь энергий протонов на смещение и ионизацию осуществляется при E = 26 кэВ. При больших энергиях превалируют ионизационные потери. В соответствии со спектрами протонов в КП (например, в зоне радиационных поясов Земли), основным процессом взаимодействия протонов с материалами КА является ионизационный.

Ионизационные процессы образования и разделения носителей заряда при облучении квантами или частицами с энергией большей ширины запрещенной зоны различных соединений

Процессы образования и разделения носителей заряда при облучении ультрафиолетом или заряженными частицами с энергией квантов большей ширины запрещенной зоны, могут протекать одинаково по приведенным ниже схемам (на примере ${\rm TiO}_2$).

1) Образование электронно-дырочных пар

$$TiO_2 + (h\nu, e^{-*}, p^{+*}) \rightarrow e^- + p^+.$$
 (4)

2) Движение дырок к отрицательно заряженной поверхности, взаимодействие с сорбированными радикалами и их окисление

$$p^+ + R \to RO^-; \tag{5}$$

3) Нейтрализация дырками кислорода на поверхности

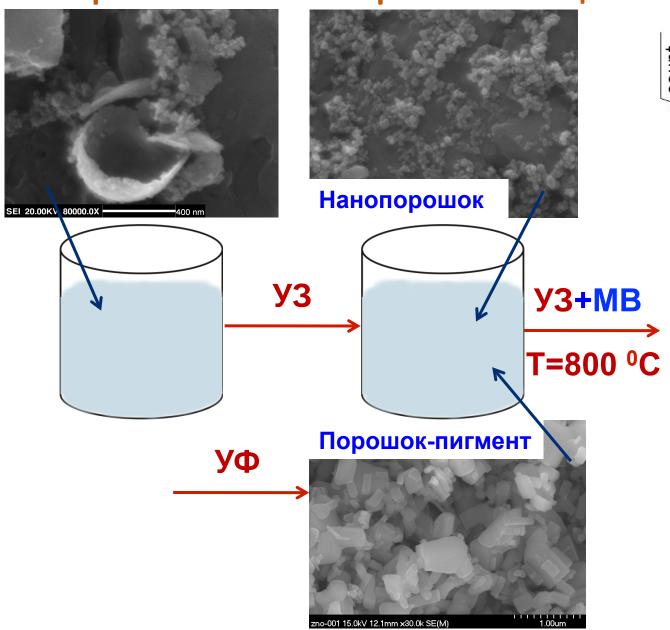
$$p^{+} + O_{\Pi}(O_{p}) \rightarrow O; \tag{6}$$

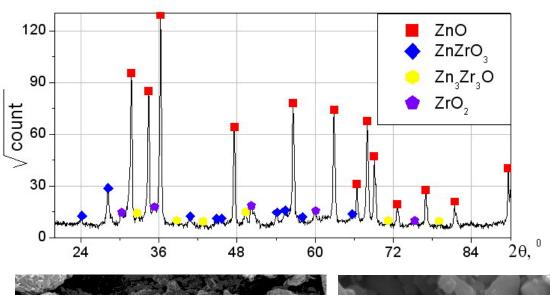
4) Образование молекулярного кислорода и его уход с поверхности

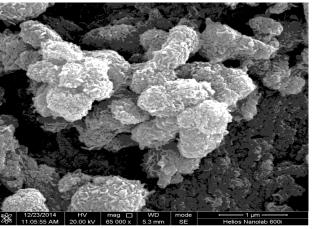
$$O + O \rightarrow O_{2ra3} \uparrow.$$
 (7)

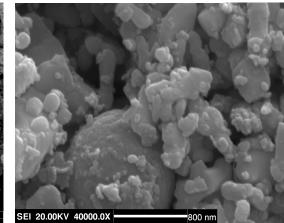
- 5) Сначала уходит поверхностный кислород (O_n) , а затем и кислород решетки (O_p) . Появляются анионные вакансии в различном зарядовом состоянии.
- 6) Поверхность TiO_2 , обогащается катионами и атомами титана. При большой концентрации они объединяются.

Модифицирование неорганических материалов наночастицами с целью уменьшения концентраций дефектов

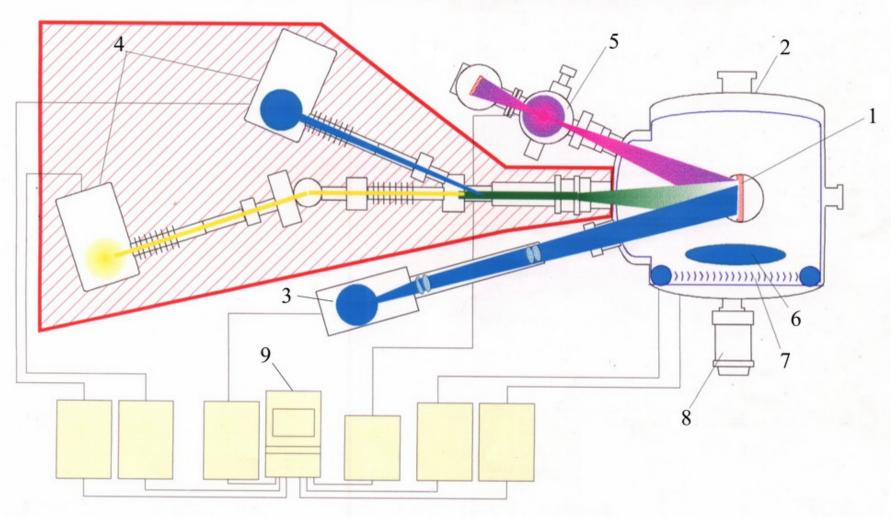

В соответствии с приведенными реакциями, происходящими при облучении соединений, рассмотрим механизмы процессов, происходящих в модифицированных соединениях.


Если на поверхности находятся центры релаксации, в качестве которых могут выступать дислокации, наночастицы или редкоземельные элементы, то описанные выше реакции не происходят или происходят в меньшей степени в соответствии с вероятностью взаимодействия носителей зарядов с центрами релаксации. Это приводит к тому, что в модифицированных порошках образуется меньше фото- и радиационных дефектов.


Модифицирование полимерных материалов наночастицами с целью уменьшения концентраций дефектов


В лаках, смолах и других полимерных соединениях модифицирование наночастицами приводит к образованию комплексов, сопровождающихся процессами сшивания, что обуславливает увеличение фото- и радиационной стойкости.

Практическая реализация



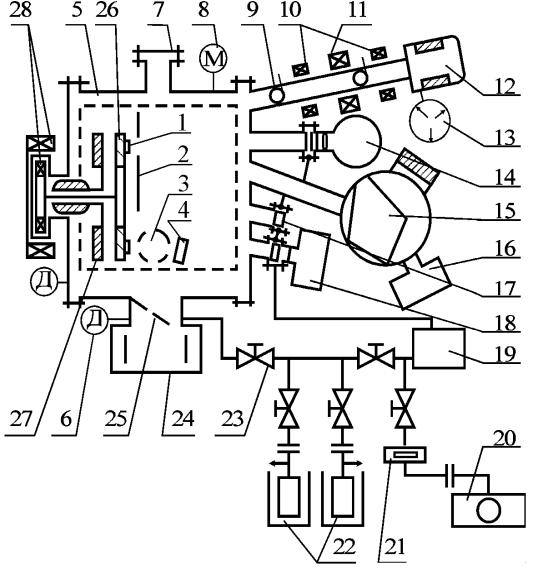
Имитация и моделирование условий космического пространства

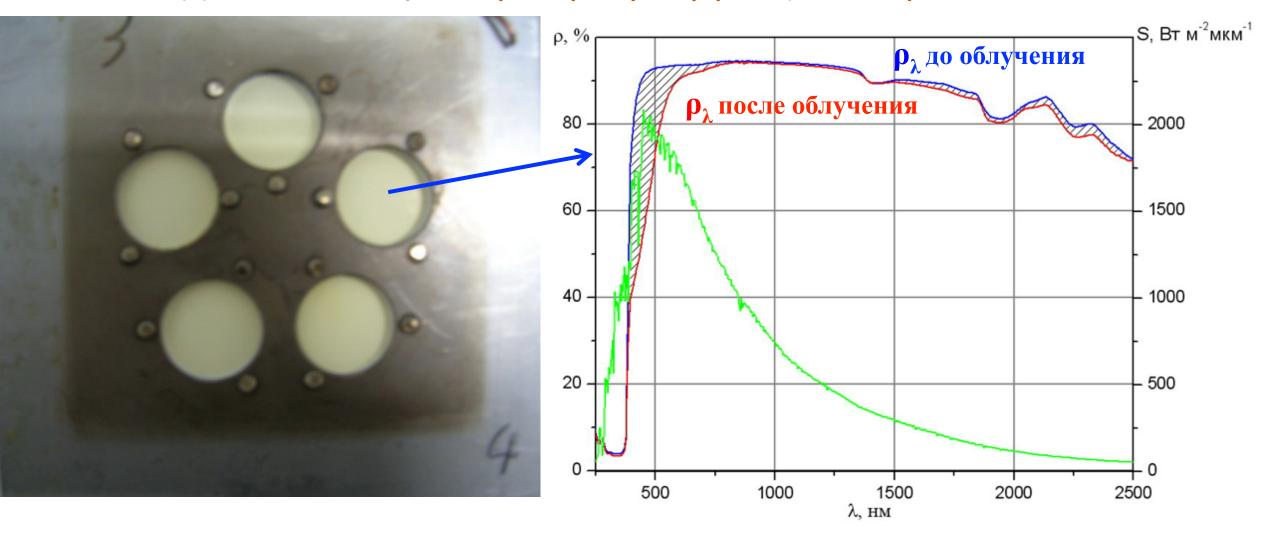
- 1 образец;
- 2 вакуумная камера;
- 3 источник ЭМИ, имитирующий солнечное
- излучение;
- 4 ускоритель протонов и электронов;
- 5 источник ВУФ;
- 6 система

термоциклирования;

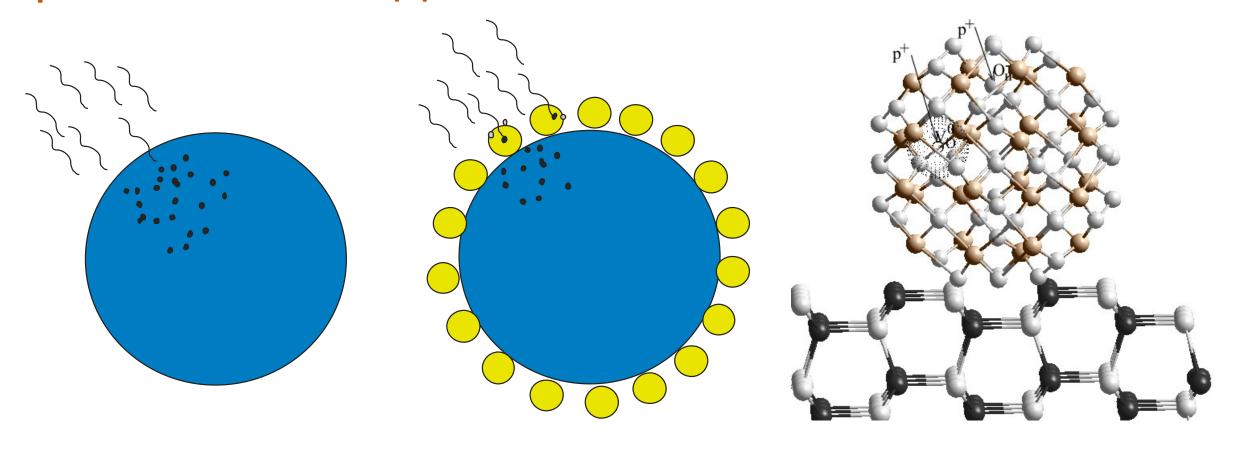
- 7 охлаждающая система на жидком азоте;
- 8 турбомолекулярный насос;
- 9 система управления

Имитация и моделирование условий космического пространства




Схема установки «Спектр-1»: 1 - образец; 2 - защитныйэкран; 3 – сфера; 4 – клиновая линза; 5 – азотный экран; 6 – датчик РОМС-1; 7 – загрузочный люк; 8 – датчик ПМИ-27; 9 – люминесцирующие флажки; 10 – отклоняющие катушки; 11 – фокусирующая катушка; 12 – электронная $\frac{14}{1}$ пушка; 13 — сублимационный титановый насос; 14 осветитель на лампе ДКСР-3000; 15 - магнитный масс-16 сепаратор; 16 – источник ионного тока; 17 – смотровое кварцевое окно; 18 – блок осветителя для измерения отражения; 19 – баллон "охранного вакуума"; 20 – форвакуумный насос; 21 - сорбционная ловушка; 22 цеолитовый насос; 23 – кран ДУ-10; 24 – насос НМДО-025-1; 25 — поворотная диафрагма; 26 — поворотный столик; 27 – нижний столик- термостат; 28 – магнитный привод.

Имитация и моделирование условий



Фотография установки «Спектр-1» лаборатории РКМ ТУСУРа

Экспериментальные результаты изменения оптических свойств модифицированных наночастицами пигментов, связующих (лаки и эпоксидные смолы) и терморегулирующих покрытий

Схема осаждения наночастиц на поверхности различных соединений

І. МОДИФИЦИРОВАНИЕ НАНОЧАСТИЦАМИ ПИГМЕНТОВ

1. Модифицирование пигмента ${\rm TiO_2}$ наночастицами различных оксидных соединений (анализ спектров диффузного отражения).

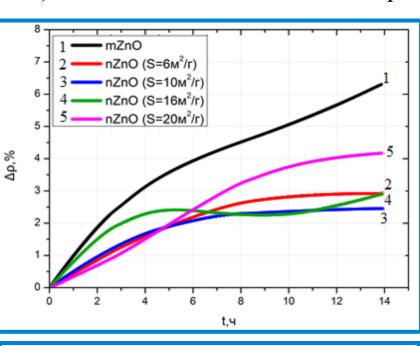
Порошок TiO_2 (R-10) модифицировали наночастицами оксидов металлов Al_2O_3 , CeO_2 , $Al_2O_3+CeO_2$, ZrO_2 , Y_2O_3 , $ZrO_2+Y_2O_3$, ZrO_2+ZrO_3 , ZrO_2+ZrO_3 , ZrO_2+ZrO_3 , ZrO_2+ZrO_3 , ZrO_2+ZrO_3 , ZrO_2+ZrO_3 , ZrO_3+ZrO_3 , ZrO_3+Zr

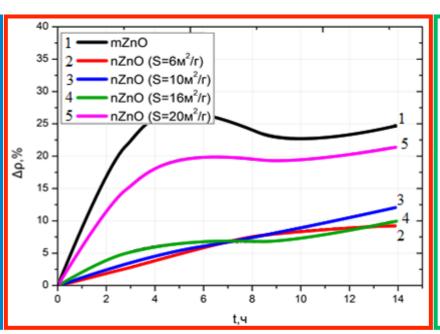
Таблица 1. Значения $\Delta \rho$ на различных длинах волн порошка TiO_2 (R-10), модифицированного наночастицами различных оксидов металлов.

Длина волны, нм	Типы нанопорошков								
	Исх.	MgO	ZnO	TiO ₂	Al ₂ O ₃	ZrO ₂	SiO ₂		
440	14.6	12.2	9.4	10.8	11.2	8.9	10.6		
580	16.1	12.5	12.2	11.8	10.1	8.3	8.4		
850	22.9	13.4	18.5	15.0	10.3	9.2	10.3		
1200	26.7	12.8	19.4	14.2	8.4	11.9	8.2		
1800	17.1	7.1	11.5	4.6	3.8	2.6	2.6		

2. Модифицирование пигмента TiO_2 наночастицами ZrO_2 различной концентрации (анализ изменений интегрального коэффициента поглощения).

Порошок TiO_2 модифицировали наночастицами ZrO_2 различной концентрации, легким прессованием в металлические чашечки изготавливали образцы, регистрировали спектры ρ_{λ} до и после облучения электронами с энергией 30 кэВ in situ. По спектрам ρ_{λ} рассчитывали коэффициент поглощения a_s и его изменение Δa_s после облучения электронами (E=30 кэВ, Φ =5·10¹⁶ см⁻², T=300K). В таблице 5 представлены полученные результаты, из которых следует, что оптимальной является концентрация наночастиц 1÷3 масс. %.


Таблица 3. Зависимость изменения коэффициента поглощения a_s после облучения электронами покрытий на основе пигментов диоксида титана от концентрации нанопорошка ZrO_2


C,%	0	0.5	1	3	5	7	10
Δa_{s}	0.104	0.104	0.077	0.077	0.126	0.147	0.133

Полученные результаты показывают, что модифицирование пигментов наночастицами является эффективным способом увеличения их радиационной стойкости.

3. Модифицирование пигмента ZnO наночастицами различных оксидных соединений.

А) Радиационная стойкость микро и нанопорошков ZnO с различной удельной поверхностью

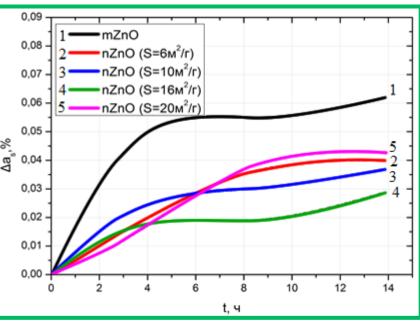
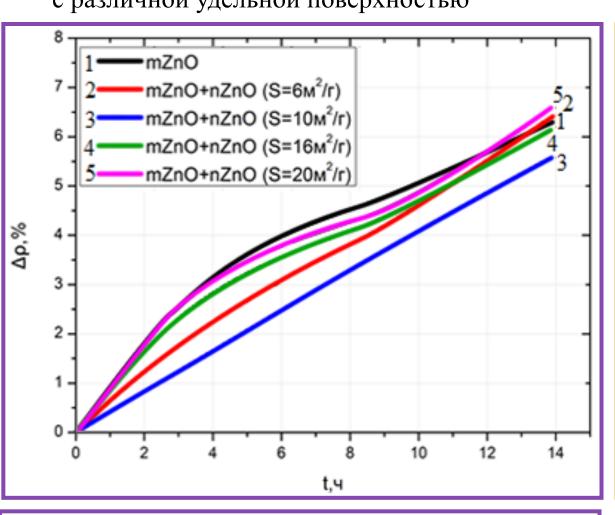



Рисунок 2. Зависимость изменений коэффициента диффузного отражения, на длине волны **410 нм**, от времени облучения электронами с энергией 30 кэВ потоком $1 \cdot 10^{12}$ см⁻²с⁻¹, микро (mZnO)- и нанопорошков (nZnO) с различной удельной поверхностью.

Рисунок 3. Зависимость изменений коэффициента диффузного отражения, на длине волны **1800 нм**, от времени облучения, микро (mZnO)- и нанопорошков (nZnO) с различной удельной поверхностью.

Рисунок 4. Зависимость изменений интегрального коэффициента поглощения Δa_s микро (mZnO) - и нанопорошков (nZnO) оксида цинка от флюенса электронов.

Б) Радиационная стойкость микропорошка ZnO, модифицированного собственными нанопорошками с различной удельной поверхностью

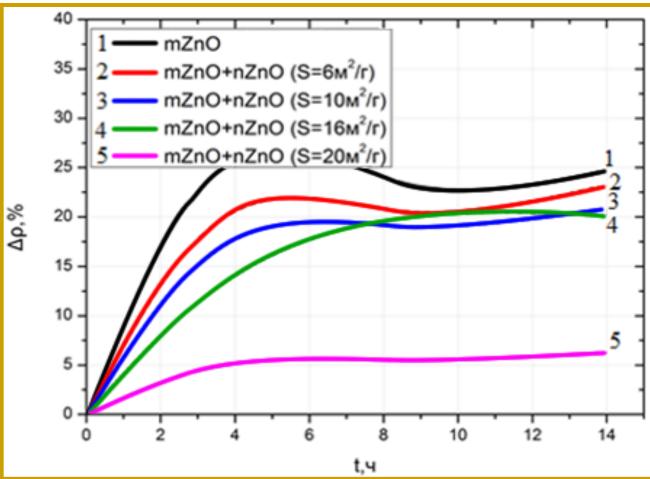


Рисунок 5. Зависимость изменениц коэффициента диффузного отражения, на длине волны **410 нм**, от времени облучения, микро (mZnO)- и модифицированных наночастицами оксида цинка с различной удельной поверхностью.

Рисунок 6. Зависимость изменениц коэффициента диффузного отражения, на длине волны **1800 нм**, от времени облучения, микро (mZnO)- и модифицированных наночастицами оксида цинка с различной удельной поверхностью.

4. Модифицирование покрытия на основе пигмента ZrO2 наночастицами различных оксидных соединений.

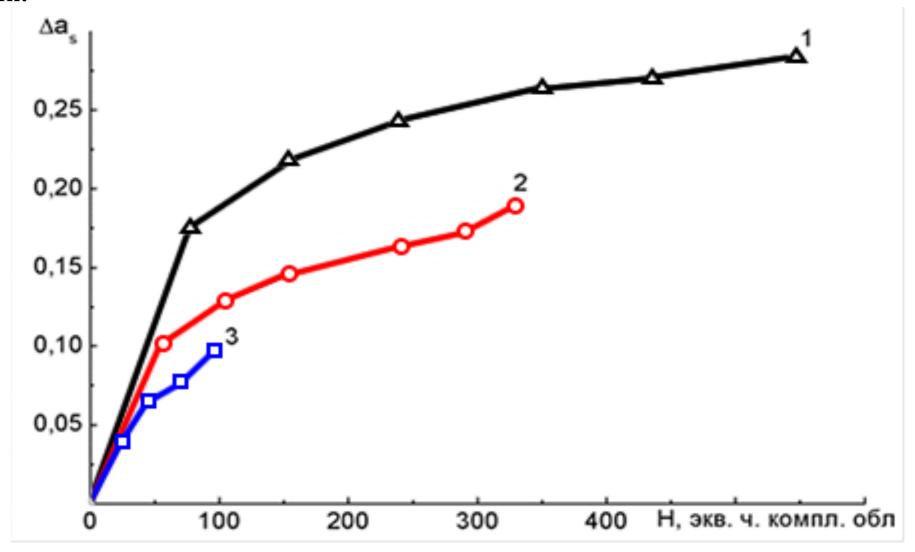


Рисунок 7. Кинетика изменения коэффициента поглощения покрытий на основе порошков диоксида циркония не модифицированного (1) и модифицированных наночастицами оксида алюминия с концентрацией 1масс% (2) и 3 мас% (3) при комплексном облучении ЭМИ + электроны + протоны.

НАМИ ВЫПОЛНЕНЫ ИССЛЕДОВАНИЯ:

- 1) Радиационной стойкости нанопорошков Al_2O_3 , CeO_2 , $Al_2O_3+CeO_2$, ZrO_2 , Y_2O_3 , $ZrO_2+Y_2O_3$, ZnO, TiO_2 , MgO, SiO_2 ;
- 2) Порошков микронных размеров ZnO, TiO₂ и ZrO₂, модифицированных наночастицами различных оксидов;
- 3) Порошков микронных размеров ZnO, TiO₂, MgO и SiO₂, модифицированных собственными наночастицами;
- 4) Зависимость оптических свойств и радиационной стойкости пигментов ZnO и TiO₂ от размеров ионных радиусов и зарядового состояния катионов наночастиц.

II. Модифицирование наночастицами связующих ТРП — кремнийорганического лака и эпоксидной смолы

А) Модифицирование наночастицами ZrO₂

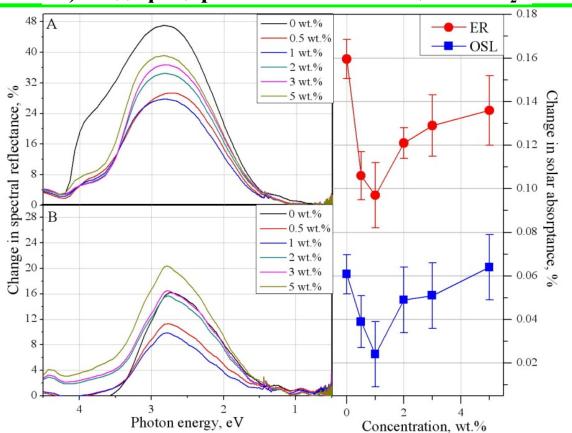


Рис. 8. Спектры наведенного поглощения эпоксидной смолы (A) и кремнийорганического лака (Б), модифицированных нанопорошком ZrO_2 различной концентрации, облучененных протонами (E=100 кэB, Φ =5·10¹⁵ см⁻²). Зависимость деградации от концентрации наночастиц (C).

Под действие ионизирующих излучений в полимерах происходят процессы ионизации и возбуждений, обуславливающие разрыв химических связей и образованием свободных радикалов. Поэтому модифицирование наночастицами может быть эффективным методом сшивания

наночастица

Выполнены исследования по влиянию модифицирования наночастицами ZrO_2 , Al_2O_3 , CeO_2 , SiO_2 , TiO_2 кремний органического лака KO-859 и эпоксидной смолы, используемых в качестве связующих терморегулирующих покрытий KA. Модифицирование связующих нанопорошками осуществляли термодиффузионным методом под воздействием ультразвуковых колебаний. Нанопорошки диспергировали в смеси растворителей, полученный раствор смешивали с необходимым количеством лака или эпоксидной смолы при периодическом воздействии ультразвука, затем наносили на алюминиевые подложки и сушили при комнатной температуре.

Б) Модифицирование наночастицами Al₂O₃

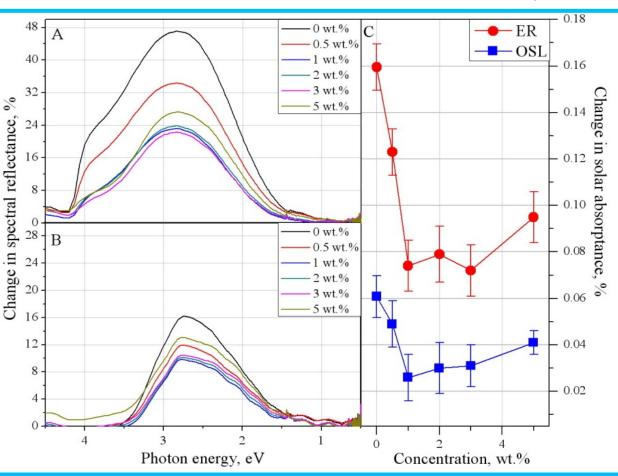


Рис.9. Спектры наведенного поглощения эпоксидной смолы (A) и кремнийорганического лака (Б), модифицированных нанопорошком Al_2O_3 различной концентрации, облучененных протонами (E=100 кэВ, Φ =5·10¹⁵ см⁻²). Зависимость деградации от концентрации наночастиц (C).

В) Модифицирование наночастицами СеО2

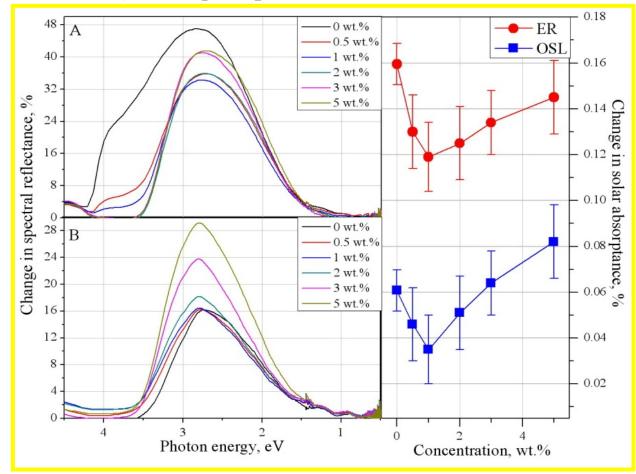


Рис.10. Спектры наведенного поглощения эпоксидной смолы (A) и кремнийорганического лака (Б), модифицированных нанопорошком CeO_2 различной концентрации, облучененных протонами (E=100 кэВ, Φ =5·10¹⁵ см⁻²). Зависимость деградации от концентрации наночастиц (C).

Г) Модифицирование наночастицами SiO₂

48 A 0 wt.% **─**ER 0.5 wt.% OSL 40 -0.163 wt.% Change in spectral reflectance, % 5 wt.% Change in solar absorptance, 0 wt.% 0.5 wt.9 24 3 wt.% 5 wt.% 12. 0.04 0.02 Photon energy, eV Concentration, wt.%

Рис.11. Спектры наведенного поглощения эпоксидной смолы (A) и кремнийорганического лака (Б), модифицированных нанопорошком SiO_2 различной концентрации, облучененных протонами (E=100 кэB, Φ =5·10¹⁵ см⁻²). Зависимость деградации от концентрации наночастиц (C).

Д) Модифицирование наночастицами ТіО2

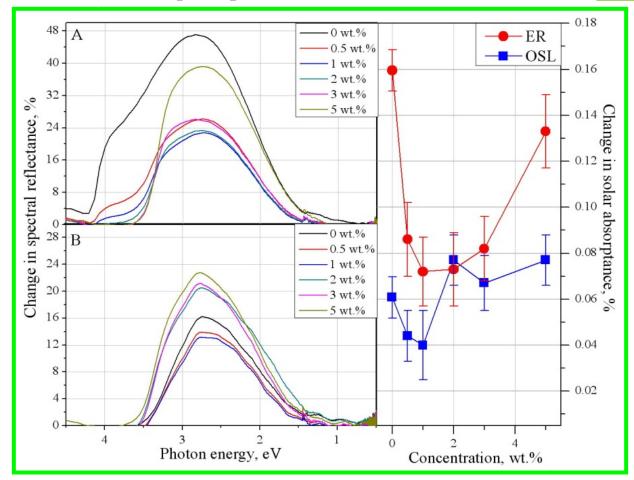


Рис.12. Спектры наведенного поглощения эпоксидной смолы (A) и кремнийорганического лака (Б), модифицированных нанопорошком ${\rm TiO_2}$ различной концентрации, облучененных протонами (E=100 кэB, Φ =5·10¹⁵ см⁻²). Зависимость деградации от концентрации наночастиц (C).

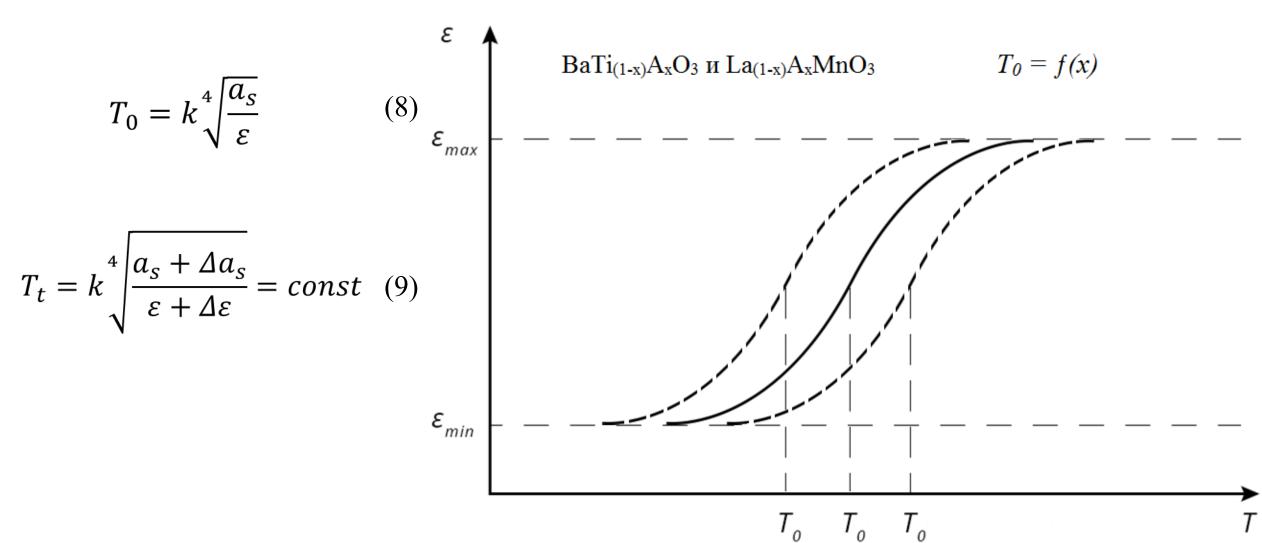
Таблица 2. Эффективность модифицирования лака КО-859 и эпоксидной смолы наночастицами различных оксидов

Тип наночастиц		ZrO_2	Al_2O_3	CeO_2	SiO_2	TiO ₂
$\mu = \frac{\Delta a_{s0}}{\Delta a_{s0}}$	Эпоксид.	163%	225%	133%	178%	229%
$\Delta a_s n$	КО-859	273%	207%	158%	500%	150%

Выводы:

- 1. Эффективность модифицирования кремнийорганического лака и эпоксидной смолы составляет более 150% и достигает 500%, что значительно выше по сравнению с эффективностью модифицирования порошков.
- 2. Наибольшая эффективность регистрируется при модифицировании порошком SiO_2 , который отличается от всех других нанопорошков двумя свойствами: обладает аморфной структурой и имеет наибольшую удельную поверхность.

Интеллектуальные покрытия для систем терморегулирования космических аппаратов


Принцип термостабилизации объектов с помощью интеллектуальный покрытий

Твердые растворы на основе соединений $BaTi_{(1-x)}A_xO_3$, $Ba_{(1-y)}B_yTiO_3$, $La_{(1-x)}A_xMnO_3$. Катионы бария, титана, лантана частично замещены атомами других элементов, что приводит к изменению типа кристаллической решетки и свойств этих соединений.

Излучательная способность таких соединений в зависимости от температуры изменяется в широких пределах от значений, характерных для диэлектриков, до значений, характерных для металлов (ε =0,2÷0,9).

Если такие соединения использовать в терморегулирующих покрытиях, то при изменении коэффициента поглощения $a_{\rm s}$ или подводимой мощности, температура КА будет стабилизироваться за счет соответствующего изменения излучательной способности.

Принцип термостабилизации объектов с помощью интеллектуальный покрытий

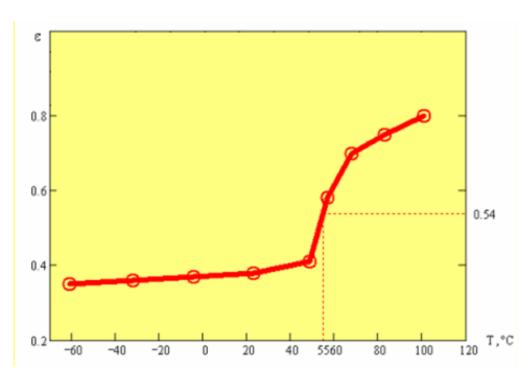
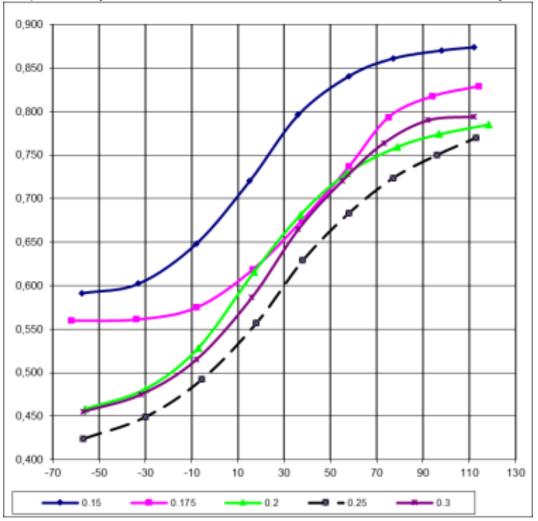
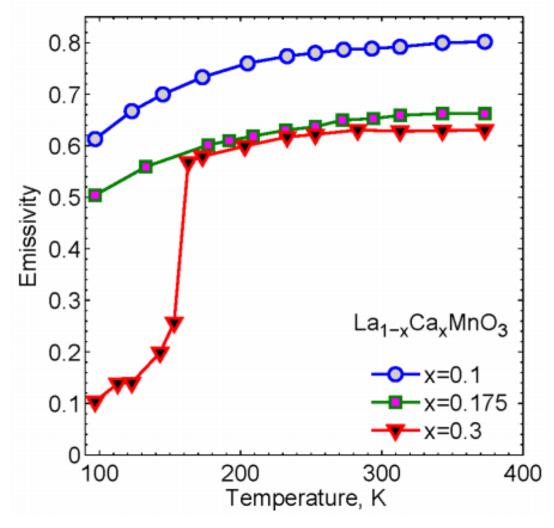
Типы интеллектуальных покрытий

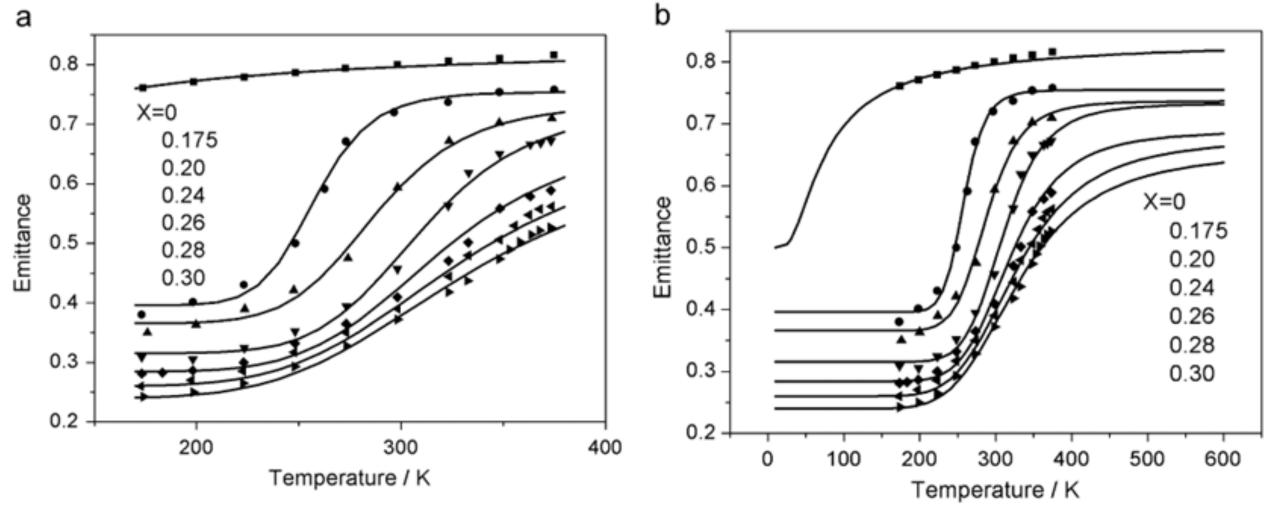
Покрытия могут быть изготовлены четырех типов:

- •В виде керамических плиток;
- •В виде пленок;
- •В виде красок;
- •В виде нанесенных слоев.

Экспериментальные температурные зависимости излучательной способности покрытий на основе соединений с фазовыми переходами

Рисунок 13. Покрытие №1


Рисунок 14. Покрытие №2

Влияние концентрации стронция (X) на температурные зависимости излучательной способности соединения $La_{(1-x)}Sr_xMnO_3$

Температурные зависимости излучательной способности для образцов $La_{1-x}Ca_xMnO_3$

Температурная зависимость $\varepsilon_{\rm H}$ (T) для всех образцов: (a) - диапазон температур от 173 до 373 K, и (б) температура от 5 до 600 K. В рисунках точки являются экспериментальными результатами, а сплошные линии аппроксимацией результатов из уравнения.

Объемные доли металлической и диэлектрической фазы были приведены как:

$$f = \frac{1}{1 + \exp(\Delta U/k_{\rm B}T)} \tag{10}$$

$$f' = (1 - f) = \frac{\exp(\Delta U/k_B T)}{1 + \exp(\Delta U/k_B T)}$$
(11)

где f и f - являются объемными долями металлической и диэлектрической областей, соответственно, $k_{\rm B}$ постоянная Больцмана. $\Delta U \approx - U_0 (1-T/T_{\rm c}^{\rm mod})$ - разность энергетических уровней (на одну элементарную ячейку) между металлическими и диэлектрическим состоянием при температуре T. (Здесь $T_{\rm c}^{\rm mod}$ температура перехода метал-диэлектрик и равна либо приблизительно равна Tc.) Термин U_0 - разница энергетических уровней между металлическим и диэлектрическим состоянием при T=0 К. Согласно этому сценарию, общая полусферическая излучательная способность образца может быть выражена, в первую очередь, как сумма излучения металлической и диэлектрической фазы, а именно,

Согласно этому сценарию, общая полусферическая излучательная способность образца может быть выражена, в первую очередь, как сумма излучения металлической и диэлектрической фазы, а именно,

$$\varepsilon_{\rm H} = \varepsilon_{\rm H,M} \times f + \varepsilon_{\rm H,I} \times f'$$
 (12)

 $\epsilon_{\rm H,M}$ - это общая полусферическая излучательная способность соединения в металлической фазе и $\epsilon_{\rm H,I}$ - общая полусферическая излучательная способность соединения в диэлектрической фазе. Здесь предположили, что значения $\epsilon_{\rm H,M}$ и $\epsilon_{\rm H,I}$ - зафиксированные значения, которые не изменяются в зависимости от температуры.

ЗАКЛЮЧЕНИЕ

- СТАБИЛЬНОСТЬ ОПТИЧЕСКИХ СВОЙСТВ И РАБОЧИХ ХАРАКТЕРИСТИК ТЕРМОРЕГУЛИРУЮЩИХ ПОКРЫТИЙ МОЖНО ЗНАЧИТЕЛЬНО УВЕЛИЧИТЬ МОДИФИЦИРОВАНИЕМ ПИГМЕНТОВ и связующих НАНОЧАСТИЦАМИ. ЭТО ПОЗВОЛИТ УВЕЛИЧИТЬ СРОКИ АКТИВНОГО СУЩЕСТВОВАНИЯ КОСМИЧЕСКИХ АППАРАТОВ.
- ИСПОЛЬЗОВАНИЕ «ИНТЕЛЛЕКТУАЛЬНЫХ» ОТРАЖАЮЩИХ И ПОГЛОЩАЮЩИХ ПОКРЫТИЙ ПОЗВОЛИТ ОСУЩЕСТВЛЯТЬ Поддержание НА ЗАДАННОМ УРОВНЕ Температуры КОСМИЧЕСКИХ АППАРАТОВ.
- РАЗРАБОТКИ ПО ПОВЫШЕНИЮ ФОТО- И РАДИАЦИОННОЙ СТОЙКОСТИ ПУТЕМ МОДИФИЦИРОВАНИЯ ПИГМЕНТОВ И СВЯЗУЮЩИХ НАНОЧАСТИЦАМИ И В ОБЛАСТИ СОЗДАНИЯ «ИНТЕЛЛЕКТУАЛЬНЫХ» ПОКРЫТИЙ ПОМИМО КОСМИЧЕСКОЙ ОТРАСЛИ НАХОДЯТ ПРИМЕНЕНИЕ В ДРУГИХ ОБЛАСТЯХ ПРОМЫШЛЕННОСТИ И СТРОИТЕЛЬСТВА.

Публикации по результатам работы

Защищены диссертации:

- Нещименко В.В. «Структура, свойства и радиационная стойкость оксидных микро и нанопорошков и отражающих покрытий, изготовленных на их основе», на соискание ученой степени доктора физико-математических наук, 2017г.
- Юрьев С.А. «Оптические свойства и радиационная стойкость порошков диоксида титана, модифицированных наночастицами оксидных соединений», на соискание ученой степени кандидата технических наук, 2015г
- Утебеков Т.А. «Структура, оптические свойства и радиационная стойкость отражающих микропорошков BaTiZrO₃», на соискание ученой степени кандидата технических наук 2013г.
- Лапин А.Н. «Влияние модифицирование наночастицами на оптические свойства и радиационную стойкость отражающих микропорошков», на соискание ученой степени кандидата технических наук, 2010г.
- Нещименко В.В. «Исследование оптических свойств и радиационной стойкости порошков оксида цинка, модифицированных наночастицами», на соискание ученой степени кандидата физикоматематических наук, 2009г.

Опубликовано: более 60 статей в журналах, индексируемых издательствами Web of Sciense и Skopus

Опубликовано: 3 сборника научных трудов в 2011, 2014 и 2016 годах

Получено: 11 патентов на изобретения

Спасибо за внимание