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During the last decades, powerful infrared lasers made of 
Iterbium-doped silica fibers are actively designed and tested.

The main restriction upon the radiation power is imposed by the 
quartz destruction threshold of about 1 MW/cm2. Therefore a key 
design element is the fiber diameter increase, however not 
violating the single-mode generation regime.

One of the methods of energy localization in the optical fiber core 
consists in quasi-periodic modulation of the refraction index in its 
cladding due to adding a few layers doped with germanium 
dioxide.
A specially designed structure of circular doped layers assures 
resonance field attenuation in the fiber cladding, impeding energy 
leakage from the guide core. This effect, analogous to Bragg 
reflection in crystal gratings, gives way to creation of high-quality 
optical fibers with large mode area – P. Roy, S. Février, et al. ( XLIM 
Research Institute, Limoges, France), M. Likhachev, S. Semjonov
(Fiber Optics Research Center, Moscow).
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Introduction



Elementary theory of Bragg mirrors is well known. The refractive 
index and thickness of alternating dielectric layers is designed in 
such a way that the Fresnel reflections of the incident wave from 
their interfaces add up constructively (in-phase). This leads to an 
exponential field attenuation in the semi-infinite periodic mirror 
structure, hence the total reflection of the incident wave.

As the phase advance depends on frequency, the field 
attenuation decrement and the reflection coefficient drop with 
changing wavelength, and, outside a certain frequency band, 
exponential attenuation gives place to an oscillatory regime.

When designing a Bragg waveguide cladding, the problem arises 
of providing maximum field attenuation in the periodic dielectric 
structure with minimum number of layers.
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In order to find a solution of the aforementioned optimization problem,  
consider general theory of EM wave propagation in periodic media. It is 
analogous to the theory of Bloch waves in a periodic potential:
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P x P x


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     , exp ,E x t u x i t  2 2 ( ) 0,u k n x u k c  

1D propagation of electromagnetic waves in a non-uniform medium with 
refractive index            is governed by a similar equation: 𝑛(𝑥

Analytic solutions of 1D Schrӧdinger or wave equation are known but for a 
few model potentials. Among periodic    , an exact solution 
can be easily constructed for a meander profile of refractive index or for a grid 
of Dirac delta-functions (A. Yariv, P. Yeh. Optical Waves in Crystals). In other 
cases one has to rely upon  approximate formulas or numerical approaches. 
However, Floquet theorem allows us to predict the general character of the 
solution:

( ) ( )n x n x 
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In order to construct an interference mirror or a Bragg fiber cladding, one has to 
create an exponentially decreasing solution.
To comprehend the principle of searching an optimal design, consider the 
electro-mechanical analogy.
To a change of variables, one-dimentional wave equation with non-uniform 
С точностью до замены переменных одномерное волновое уравнение с is 
equivalent to a linear oscillator with variable eigenfrequency :

In accordance with Floquet theorem, the product of the multipliers                                
of two fundamental solutions equals to unity.   Two situations are possible:

1. The multipliers are real-valued; one solution is exponentially growing and the other 
is proportionally decreasing: .

2. The multipliers are purely imaginary; they are complex conjugated and equal to 
unity by modulus.
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In the case of periodic eigenfrequency variations:                                   
an exponential increase of the oscillation amplitude – parametric resonance may 
arise.
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The solution to is sought as

Elementary theory of parametric resonance (L. Landau, E. Lifshitz. Mechanics) states that, with a small perturbation of 
the oscillator parameters by a harmonic function:                                                                  , the resonance is excited most 
intensively if the modulation frequency is close to the double eigenfrequency .
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The amplitudes , to the first-order approximation relative to        , can be found 
from the equation set
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Maximum amplification on a period equals to

Frequency band where the resonance arises is determined by inequality

With another choice of initial phase, a decreasing solution arises .
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Beyond perturbation theory, no elementary theory exists describing quasi-periodic solutions

.  For the classical Mathieu equation

numerous algorithms of characteristic exponent and periodic function determination 
have been developed.
However, these results have a limited application area, as in the case of deep modulation the 
oscillator parameters use to vary in a more complicated way.



 2

0 1 cos 0u h t u    

( )P t

exp( ) ( )u t P t

The inverse problem – search for an optimal swinging regime is not 
enough theoretically studied.
Meanwhile we have a striking example of efficient parametric excitation 
of mechanical oscillations.
Contemplating a child rocking a swing we can make a number of useful 
observations:
- The child intuitively finds a law of changing the pendulum 

parameters leading to the fastest growing of the oscillation 
amplitude;

- He/she does not use a wristwatch but  coordinates his/her 
movements with the current oscillation phase;

- Pendulum parameters vary periodically but far from harmonic way.

Introduction



Action plan

2 ( ) 0u t u  

For a periodic   , we will derive a continuum of exact solutions to the oscillation equation and 
find a simple formula for the Floquet characteristic number. 
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amplitude phase

Basing on our experience in rocking the swing, let us use the phase of anharmonic oscillations as a 
new independent variable. 

In what follows, we describe the basics of the phase parameter method, some generalizations and 
application to wave propagation in periodic media. 

In order to easily solve the inverse problem, it is desirable 
to have an analytical description of anharmonic linear 
oscillations with arbitrary varying eigenfrequency : ( )t

Variations of eigenfrequency result in the change of the oscillation period, amplitude and 
waveform. 



Linear oscillator: method of phase parameter
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Let us define the phase of anharmonic oscillations by the following formula

and consider it as a new independent variable. We make a substitution 

and look for a parametric solution .

Oscillation equation transforms to a set of nonlinear differential equations
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Here, for convenience, we 
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Periodic modulation

Coming back to time variable t , we obtain Floquet solution

and explicit formulas for its quasi-period and increment:

For a periodic variation of the parameter: , the integrals 
contain linearly growing “secular” terms
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with arbitrary dependence of the eigenfrequency on the oscillation phase:

So, we obtain for u(t) an explicit analytical solution
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2b 0 2b 0.3
2b 0.3 

Parametric resonance

Only second odd harmonic 
is important!
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The method of phase parameter reveals a clear relation 
between characteristic Floquet exponent and the 
modulation law of the oscillator parameters. 
Expanding in a Fourier series 
we obtain:

( )g 



Inverse problem – maximum increment
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Parametric solution: In physical variables:
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shows that, within given eigenfrequency variation limits, maximum oscillation 
increment is reached for a step-wise parameter change at each quarter of period:
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Optimal solution

In real life, the step-wise parameter change is hardly realizable. An optimal smooth solution 
corresponds  to a single harmonic in the exponent :
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Intermediate summary
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• An explicit definition of phase of linear anharmonic oscillations is 
given.

• Using the oscillation phase as independent variable yields an exact 
analytic solution for arbitrary dependence                         . 

• Explicit formula is found for the increment of parametric oscillations:

• For a weak periodic modulation, our solution is in agreement with 
classical theory of parametric resonance

• In case of deep modulation, we find an optimal regime of resonance 
excitation
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Nonlinear oscillations
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Method of phase parameter can be applied to describe nonlinear oscillations as well. 

Consider physical pendulum motion: 2 ( )sin 0u t u  
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Nonlinear Floquet theorem: Parametric resonance of linear and nonlinear oscillator:

We define oscillarion phase as and 
look for a parametric solution:
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These equations have 
analytic solution 
for arbitrary
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Waves in periodic media
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Nonlinear parametric equations

Have exact analytic solution
for arbitrary  Q 
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For periodic we obtain 
analytic description of Bloch waves in a 
“forbidden” zone

The results obtained for a linear oscillator 
can be applied to 1D wave equation by 
change of variables
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Problems of optimal synthesis

1. Multilayer mirror

The design goal – provideь maximum decrement (attenuation on a period)

within technological limits:

Solution:

a)

b)
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Coming back to      variable we obtain a 
stack of quarter-period plates and its 
smooth analog:
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Problems of optimal synthesis

The analytic solution obtained above can be used for optimal 
synthesis of Bragg waveguides

The goal of optimization is to provide fast field attenuation in the 
waveguide cladding, minimum radiation loss
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Model index profile and two 
trapped Bragg modes

Realistic Bragg fiber cladding (P. Roy, M. 
Likhachev, et al.) corresponds to an 
optimal smooth refractive index profile

Usually, optimal solution is sought by numerical methods, starting 
from quarter-period layers stack model. Our theory of parametric 
anti-resonance presents an analytic solution

2. Bragg waveguide



Problems of optimal synthesis

Numerical example: planar waveguide

Uniform core:          

Periodic cladding:

Outer coating:

Propagating mode:

Wave equation:
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To describe propagating waves in a periodic medium we 
have to give a definition to the phase of a complex 
anharmonic wave. By generalization of our previous 
construction let us define the phase as a homogeneous 
function of and :( )u x ( )u x 2 22
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Parametric description of traveling waves

In order to complete the theory we have to learn to describe wave propagation in the transparency 
zones of a periodic medium and the frequency dependence of the solution. It turns to be a much 
more difficult problem. 
Not going into detailes, the main points of the travelling waves parametric description are as 
follows. As stated above, in a transparency zone the wave equation with 
periodic has a Floquet solution with a 
purely imaginary coefficient
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For real-valued solutions this formula reduces to 

the familiar expression , whereas 

in a smoothly varying medium we obtain WKB phase:
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Solving the wave equation

Our goal is to describe wave propagation in a periodic 
medium beyond the perturbation theory framework. 
In order to integrate the wave equation, written in 

variables, we introduce complex-valued 
admittance:
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leads to a nonlinear second-order equation:

Amplitude and phase of complex  admittance
satisfy a set of 

nonlinear differential equations:
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For arbitrary we find an energy integral .  

Periodic solutions arise from the integral inversion( ) ( )I I  
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Solving the wave equation
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( )U 

Bloch wave parameters

2 2

( ) ( ) ( ) 2
ln 2

( ) 4 ( ) ( )

I

I

U M I IM I I
i i dI

U I M I M I





    
      

   
Complex-valued increment:

For even we get:   attenuation (periodic )( ) ( )M I M I  0 

2
T


 

2 2 2 2
0

( ) ( )
4

4 ( ) 1 4 ( )

I
M I IM I dI

I M I I M I




 

  
Phase accumulation:                                                                          ; modulation period 

модуляции:

Parametric resonance: In physical variables:

0 5 10 15
-4

-3

-2

-1

0

1

2

3

4

 /

 I( )

n( )

X( )/8
 Re W( )

0 5 10 15 20 25
-4

-3

-2

-1

0

1

2

3

4

x

 Re w(x)

n(x)

a=0.15

p=0.95

=0.85

Numerical example: 2 2 4( ) 1 4M I a c I  

2

2

2 2

2
( ) 1 sn , ,

1

1 1

I a

a c

ac

 
    

   

 
 



To round off the construction of the phase parameter method, we should express             
in terms of variables

Frequency dependence
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Difficulty consists in the necessity to assure frequency-
independence of the refraction index profile           .
It imposes restrictions upon the variety of model 
functions , leading to a nonlinear partial 
differential equation:             
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Conclusion

• Applying oscillation phase as an independent variable allows one to 
obtain new results in the theory of linear and nonlinear oscillations;

• By analogy, we derive an analytical description of electromagnetic wave 
propagation in non-uniform media;

• Explicit formulas for period and increment of parametric oscillations are 
useful for solving the problems of optimal synthesis;

• Further development of theory is necessary for efficient description of 
Bloch waves frequency dependence;

• Generalization to the case of 2D photonic crystals is possible

Thank you for your attention!


