

Center for Wearable Sensors

Additive Printing of Flexible Electronics for Sensing

Tse Nga (Tina) Ng Electrical and Computer Engineering Dept., UC San Diego

Large-area active matrix array for flexible electronics

Output- display

Input -imager, pressure sensors

Appl. Phys. Lett. **92** (2008) 213303 Adv. Mater. **21** (2009) 1855

Sensing elements for matrix arrays

Jacobs School of Engineering

Imaging beyond visible wavelength

Figure 5 Test at indoor of visibility in artificial fog

SWIR wavelength can image through fog -not interfere with human vision -deeper penetration depth into tissues

Different from thermal imaging, higher resolution for biometrics

Complex processing of IR photosensor

Technology	Process	Standard Foundry Processes	Non-Standard Processes	Cost
Visible CMOS	Wafer Scale			\$15
LWIR Micro- bolometer	Wafer Scale			\$1,000
swir irfpa 1-3um	Die Scale		$ROIC \rightarrow$	> \$25,000
^{mwir irfpa} 3-5um	Die Scale		Die Scale Processing \rightarrow	> \$40,000
	•		Source: Dr. J. Lewis	s, DARÞA

Materials for SWIR spectral region

Collaborator: Jason Azoulay, U Southern Mississippi

Challenges for SWIR polymer photodiodes

- Signal: low EQE in photodiodes using bulk heterojunction (BHJ): visible: EQE >80% SWIR: EQE <10%
- Noise: increasing dark current with narrowing bandgap

Polymer Chemistry, (2017) 8, 2922. ACS Appl. Mater. Interfaces 2017, 9, 1654–1660

Photocurrent generation in BHJ

Limiting factor: dissociation or collection?

Absorption up to 80% -> OK EQE ~10%; then accounted for η_{absorb} , IQE~12-20% is loss mainly due to inefficient dissociation or collection?

Data do not follow Hecht charge collection model

Braun model of exciton dissociation under E-field

$$\eta_{diss} = k_D / (k_D + k_F)$$

 k_D is dissociation rate dependent on E-field k_F is recombination constant

- Higher dissociation efficiency with larger E-field, towards 100% if field is sufficiently high
- We typically operate around low field of 10⁶ to 10⁷ V/m; efficiency only between 20-40%

Identify main limiting factor: inefficient dissociation

this analysis points out that the most important thing to improve is dissociation.

Identify main limiting factor: inefficient dissociation

this analysis points out that the most important thing to improve is dissociation.

Detectivity is a signal-to-noise ratio

Accurate detectivity calculation

 $D^* = \frac{EQE}{i_{noise}} \frac{\lambda q \sqrt{Af}}{hc}$

Detectivity upon varying device thickness

Example: Measurement of heart pulse rate

ACS Appl. Mater. Interfaces 2017, 9, 1654-1660

Augmentation index: indicate arterial stiffness, higher index is higher risk

Integration prototype examples

Printed TFTs for local sensor control

sensors

M x N lines, interconnect takes more space than sensors

Alex Blau

With TFTs, M + N lines only

TFT integrated circuits provides signal conditioning before Si chip

Simple signal conditioning/processing

Gain/

threshold

detect

Key challenge for integrated TFT circuits

Challenge for implementation: Designs that tolerate variations in OTFTs

Sci. Rep (2015) 5, 13457. *Proc. IEEE* (2015) 103, 607

- Variation leads to circuit error
- Controlling variation is key to practical yield

Monte Carlo Simulation for 100 samples -for a gain + latch circuit with 7 TFTs

Printed vs photolithographic OTFTs

Similar level of variations: main source of variation is semiconductor, less impact from channel W/L

Material structures that reduce disorder

Polymers: Reduce tail states by rigid backbone that reduces torsion

Small molecules: Suppressing thermal disorder by side chain location

Jacobs School of Engineering

Modify channel surface to adjust V_T

- Important to control threshold voltage V_T
- Back-channel interface affects V_{τ} : electronic dipole, film morphology, etc. ٠

Jacobs School of Engineering

23

Reduced variations in printed OTFTs

Uniformity can be improved in both polymer and small molecules

From materials to circuit fabrication

UC San Diego Jacobs School of Engineering

IEEE Elec. Dev. Lett. (2013) 34, 271.

Examples of printed circuits

Memory readout

state 0

state 1

IEEE Transactions on Electron Devices (2017) 64, 1981-1984

Voltage multiplier

Flexible Printed Electronics (2016) 1, 015002.

Temperature dose tag

Desirable to digitize signal near sensor

Amplitude signal prone to attenuation error; frequency signal more reliable Need to add digitizing circuit near sensor

Attenuation affects amplitude measurement

Same freq as before, will get same readout

Voltage-controlled oscillator

Using printed components to mimic skin mechanoreceptor

UC San Diego | 29 Jacobs School of Engineering

Summary

- Develop short-wave infrared sensors for flexible matrix arrays
- Apply additive printing to demonstrate organic TFT circuits
 - 1. increase tolerance to device variation issues
 - 2. integrated local digitizing circuits near sensors

Acknowledgment

UCSD colleagues:

Leanne Chukoskie Harinath Garudadri Andrew Skalsky Michael Yip

Students:

Fei Deng, Padmaja Jonnalagedda, Zhenghui Wu, Weichuan Yao, Hyunwoong Kim, Kaiping Wang, Udit Parekh, Moran Amit

Collaborators:

PARC colleagues Jason Azoulay, U Southern Mississippi Zhenan Bao, Stanford

Funding:

Low-power circuit that stimulates neuron

Reconstructive imaging

 $y(\lambda) = \int \uparrow T(x,y,\lambda) \times O(x,y) \, dx \, dy$

 $y(\lambda)$ =sensor measurement T(x,y, λ)=etalon transmission O(x,y) = object image

Spectral Range to 1.8 um

- State-of-the-art spectral range for organics
- Detectivity changes <50% with increasing temperature, great for on-skin wearables

Flexible Organic Shortwave Infrared Camera

• Biomedical monitoring: identify pulse, vein recognition, blood flow volume monitoring

Requirements:

- 1. Spectral Range: 1-3 um
- 2. Flexible thin film sensor that allows skin contact
- 3. Low cost dynamic imager for 24/7 monitoring

Printed dry electrodes for electrophysiology measurement

Concentric rings to increase spatial resolution

Adv Healthcare Mater, 2017, in press

Acknowledgment

UCSD colleagues:

Leanne Chukoskie Harinath Garudadri Andrew Skalsky Michael Yip

Students:

Fei Deng, Padmaja Jonnalagedda, Zhenghui Wu, Weichuan Yao, Hyunwoong Kim, Kaiping Wang, Udit Parekh, Moran Amit

Collaborators:

PARC colleagues Antonio Facchetti, Northwestern Zhenan Bao, Stanford Iain McCollouch, Imperial/KAUST

Funding:

Need to augment spasticity diagnosis

Score	Modified Ashworth Scale (MAS)
0	No increase in muscle tone
1	Slight increase in muscle tone, with a catch and release at the end of the range of motion (ROM)
1+	Slight increase in muscle tone, followed by minimal resistance throughout the remainder of ROM
2	More marked increase in muscle tone through most of the ROM, but affected parts easily moved
3	Considerable increase in muscle tone, passive movement difficult
4 muscle	Affected part is rigid in both flexion and extension

Spatiscity -involuntary activation of muscle, very common in patient with neurological disorders such as stroke, traumatic brain injury, cerebral palsy, etc. affect 764K in US; 17M world wide

Issue with reliability in MAS ratings

- 5 patients and 12 tasks: each doctor gave 60 MAS ratings
- Only 27% of the ratings were the same; poor inter-rating reliability, yet dosage is based on this rating

Two doctors' MAS ratings on the same patients

Lead by Dr. Garudadri (Calit2) and Dr. Skalsky at UCSD School of Medicine

Prototype glove to quantify spasticity

UC San Diego Jacobs School of Engineering

Glove worn by the doctor during assessment: -measure force (printed pressure sensor by Tekscan) and angular velocity (gyroscope) -Power to move a limb P=F*v

Mock patient to calibrate sensor glove

-calibrate sensor glove with a mock patient with changeable resistance (2-20kg)

- load cell to measure force
- potentiometer to measure angular velocity
- the power P=F*v to move the mock limb is recorded

Better resolution than MAS scale

- Quantitative glove measurement allows comparison between rating trials, less dependence on rater perception
- Glove sensor improves the resolution of the spasticity assessment

Monitoring wound impedance and electrical stimulation

The impedance between two electrodes was measured before and after wound; ٠ the stimulation test is scheduled for Aug.

Electrohydrodynamic printing on MoS2 flakes

1. MoS2 flake on bare SiO2

2. MoS2 flake on h-BN layered SiO2

W: (24.0 +32.4)/2=21.3 um L: 18.5 um W/L=1.15 W: (27.8 +32.4)/2=23.1 um L: 18.5 um W/L=1.25

Technically, smaller gate length is possible Different surface properties causes disconnection in some part (red circle) Needs information on transferred MoS2 and h-BN layer (thickness=number of layers, cap of h-BN)

MoS2 on h-BN layered SiO2 wafer

- Hysteresis was not observed in the device on h-BN layered Si wafer
- Coulomb scattering originating from SiO2 might have been suppressed by inserted h-BN layer
- More positive threshold in h-BN layered device

Calibration

 $T(x,y,\lambda) = S(\lambda) \times U(x,y,\lambda) / C(\lambda)$

 $S(\lambda)$ =Sensor wavelength response $C(\lambda)$ =Camera wavelength response $U(x,y,\lambda)$ =camera transmission image of etalon

Etalon Transmission Images

Application example to detect alcohol concentration

alcohol

00

In visible spectrum, both water and alcohol are transparent; For example want to detect water in gasoline

In SWIR spectrum, water absorption peak responsive to %change near 1300 nm

Application example to detect alcohol concentration

Braun model of exciton dissociation under E-field

$$\eta_{diss} = k_D / (k_D + k_F)$$

 k_D is dissociation rate dependent on E-field k_F is recombination constant

- Higher dissociation efficiency with larger E-field, towards 100% if field is sufficiently high
- We typically operate around low field of 10⁶ to 10⁷ V/m; efficiency only between 20-40%

Examples of printed sensor:

- Dry electrodes for electrophysiology measurement
- Printed transistor circuits for signal modulation
- Quantitative assessment of force in spasticity diagnosis or for robotics

Flexible Printed Electronics in the Ng Lab

PI: Tina Tse Nga Ng, Assoc. Prof. in ECE Dept. http://flexible-electronics.ucsd.edu/

Vision: to achieve *on-demand* digital fabrication, integration of electronics on any surface

Customizable, flexible, biocompatible

Impact: novel electronic materials and devices with new form factor

Flexible imager APL (2008) **92**, 213303.

Sci. Rep. (2015) 5, 13457. Low-cost tag to track vaccine temp Approach: digital fabrication

Direct printing –maskless, low temp

Develop design rules, new processes

Infrared imaging applications for organics

At room temp, organic materials has detectivity exceeding conventional III-V compound semiconductors in NIR

TOC graphic

Acknowledgment

Grateful to our partners and materials suppliers

Predicted yield of the readout circuit

- Predicted yield from Monte Carlo points to 5% std dev
- Add power switches to keep circuit off and minimize $V_{\rm T}$ shift

Sensor Data

Glove Data Force and Angular velocity (Gyro)

Mock Patient Data Load cell and Potentiometer

Printed OTFTs operating at ≤5V

 Dielectric bilayer: Teflon and PVDF-TrFE-CTFE polymer with surfactant -gate capacitance =20nF/cm² for 60nm Teflon/600nm PVDF terpolymer -mobility ~0.6 cm²/Vs for complementary semiconductors

Inverter shows gain of -4 at 2V

Improved processing shows that the inverters switch properly with gain>1 at Vdd=2V Ring oscillator works at 3V

Printed sensor systems

Improve TFT and sensors/actuators are foundational

Organic infrared sensors

enable ubiquitous infrared spectroscopy, expand beyond visible wavelength

Applications for printed sensors

- Scalable to large-area, flexible, tunable materials Human-computer interface (touch, imager, etc.)
- Multi-component arrays that increase selectivity Low-cost, high-volume for distributed sensing

APL 92 (2008) 213303

Suslick, et al., Nature Chemistry, 2009

Sci Rep (2015), 5, 13457.

Solution processed IR sensors exceed conventional Ge

Tunable organic materials with infrared detectivity exceeding commercial Newport Ge diode

Low TFT count design

Conventional sense amplifier: 5 TFTs + 2 select TFTs (not shown)

Single TFT gain stage: 1 TFT +2 select

- 1. Use resistors to avoid bias stress
 - $\pm 10 \text{ M}\Omega \text{ or } \pm 14\% \text{ of the nominal value } 70 \text{ M}\Omega$
- 2. Single TFT gain stage, reduce TFT count, trade-off with generalizability

Printed gain-stage and latch circuit to read capacitor memory

To appear in *IEEE Tran. Elec. Dev.* (special flex elec issue)

Charge in ferroelectric capacitor is amplified and the memory state is distinguished

Device structure and fundamentals

