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FlexibleOptical
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Affordable See
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Introduction

Key advantages of organic semiconductors
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di

Ultrathin gate insulators are a key 
element for :
� low-V operation;
� down-scaling of transistors; and
� have been achieved with oxides, etc.

Field-Effect Transistors

Conventional dielectric layers are prone to crack 
formation under strain that occurs during 
fabrication or bending.

Challenges in flexible electronics: Importance of ultrathin 
gate dielectrics 
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What about polymer dielectrics ?

Polymer gate insulators are essential 
for flexible electronics, but
� it has been challenging to make them 

ultrathin while maintaining low leakage 
and high breakdown

Flexible Electronics

*H. Sirringhaus et al. Chem. Mater. 22, 1559 (2010)
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Lesson from OLEDs: how to obtain quality ultrathin 
films ?

What made OLED TV possible that 
requires sublayers typically on the 
order of only a few tens of nm over 
very large area?

Vapor-based approach and its controllability …. !

Sketch by

S. Kim (KAIST)
LGD
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Polymer dielectrics based on iCVD Process:
mechanism & merits

Monomer

Initiator(i)

Introduction of 
Monomers & Initiators

(iii)

Dissociation of Initiators
(Formation of Radicals)

Polymer

(iv)

Free Radical 
Polymerization

*K. K. Gleason et al., 

Macromolecules 2006, 39, 3688

*www.optics.Rochester.edu

� Advantages of iCVD process
� Conformal, uniform coating over large area
� Low-temperature (~RT) & solvent-less process
� Wide range of material choice/ tunability

(ii)
Physisorption
of Monomers

Initiated CVD (iCVD)

*K. K. Gleason et al., Adv. Mater. 2009, 21, 1
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pV3D3 for gate insulators 
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pV3D3: poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)
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pV3D3 insulating layers: thickness scalability

� pV3D3 can be scaled down to ~6 nm with excellent insulating 
property.

� Ci can be controlled to over 300 nF/cm
2.

MIM (Al/ pV3D3 (x nm)/ Al)

Moon et al., Nature Mater. 14 (6) 628 (‘15)  
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Application to low-V bottom-gated OTFTs

Ag-ink  (Rq=8.1 nm)

10

TG P3HT TFTs On 10cm××××10cm PEN

Active

layer

Fabrication method 

of active/dielectric

μsat

[cm2/Vs]

VT

[V]

μstdev
μav�
�

[%]

VT.stdev
VT.ave
�

[%]

This work P3HT bar-coating/iCVD 0.069 ±0.011 -1.86 ±0.06 16 3.2

Previous

work*

DPPT-TT spin-coating/spin-coating 0.72 ±0.27 -39 ±4.2 38 11

DPPT-TT bar-coating/bar-coating 1.64 ±0.41 -41.6 ±2.5 25 6.0

50 nm

PET

Al

*Y.-Y. Noh et al., Adv. Mater. 2013, 25, 4302

*Cowork with Prof. Y.-Y. Noh in Dongguk Univ.

Application to top-gated OTFTs over large area

Moon et al., Nature Mater. 14 (6) 628 (‘15)  
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*pEGDMA: Poly(ethylene glycol dimethacrylate)

Moon et al., Nature Mater. 14 (6) 628 (‘15)  
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OTFTs on various flexible substrates
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Mild processes (RT & solventless) of iCVD allows one to use virtually any 
kind of substrate.

Attaching Cell.-tapeDetaching Cell.-tapeTFTs on Glass/Cell.-tape Measuring
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Moon et al., Nature Mater. 14 (6) 628 (‘15)  
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Origin of the excellent insulting property (1)
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*EELS: electron energy loss spectroscopy

*XRD: L-ray diffraction
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� Wide energy gap � Amorphous phase

100 nm

Al

Al

pV3D3

20 nm

~11.3 nm 

169 nF/cm2

� Uniform film thickness/ conformal deposition 
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Origin of the excellent insulting property (2)

• Virtually same density down to sub-10-nm thick films

• Higher density than most organosilicone polymers (e.g. PDMS  0.965 g/cm3)
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� Tunneling limited 
characteristics

� Indication of low amount of 
traps

Origin of the excellent insulting property (3)

* Cowork with 

Prof. S.-Y. Choi in KAIST

Moon et al., 
Nature Mater. 14 (6) 628 (‘15)  

Moon et al., Nature Mater. 14 (6) 628 (‘15)  
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Other applications of iCVD polymers ?

• Flexible non-volatile memory
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TFT-based non-volatile memory operation

Thin-film transistor (TFT)-based floating gate flash memory Structure

Operation
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* “ε” indicate the flexible 

memory ε = 0.1%

ε = N/A

ε = 0.7%

ε = 2.8%

(This work)

Challenges in TFT memory devices

It has been challenging to achieve both long retention and reasonably low 

prog./erasing voltages at the same time in organic TFT memory devices…
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Organic non-volatile memory with iCVD processed 

dielectrics

C60

S. Lee et al. Nature Comm. 8, 725 (2017)
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Memory characteristics: Transfer, speed, retention 
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S. Lee et al. Nature Comm. 8, 725 (2017)
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Highly flexible organic flash memory under the 2.8 % strain

Operates successfully even after 2.8 % strain
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V.A.L.Roy* et al. Adv. Mater. 25, 872 (2013)
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Memory device on a Mylar (6 µm) over 22G-size needle

* strain(ε) = 1.0 %

Rbending= 
300 µm

Fabrication of ultra-flexible memory devices

S. Lee et al. Nature Comm. 8, 725 (2017)
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piano wire (R= 300 µm)

tuner of guitar strings

wire press

Custom-designed folding endurance test machine
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[folding process]

Foldable memory characteristics
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S. Lee et al. Nature Comm. 8, 725 (2017)



25

Other variations: memory on papers
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(ii)

Polymer

(ii)(i)

(iii), (iv)

(iv)

Initiator

Radical Monomer

iCVD*-based polymers for versatile gate dielectrics in flexible electronics

a b

c

Moon et al., Nature Mater. 14 (6) 628 (2015) [ collaboration w/ Prof. S.G. Im and B.J. Cho ]
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