



### Mpower Innovation Solutions to Critical Hydrogen and Fuel Cell Challenges

July 2020



## Mpower Innovation Overview

- Mpower uses disruptive nano porous material to solve critical technical problems in hydrogen generation and fuel cell, providing high performance, low cost and long durability proton exchange membrane (PEM) product.
- Located in Silicon Valley, California.
- Team has extensive entrepreneurial experience, including filing IPO in U.S. Team's prior startup was funded by Khosla Ventures, 3i and Softbank.
- Technical team were core engineers and scientists at industry leading companies and research institutes.
- Mpower has raised seed round from Corp VC and Angel investors
- Exclusive technology licensing and co-development with distinguished professors from top universities.



### Mpower's Position in the Value Chain



# Hydrogen is the ultimate transportation fuel





Source: IEA and IPCC Summary for Policymakers

### **Global CO<sub>2</sub> Emissions by the Transport Sector**

#### Benefit of adopting hydrogen fuel cell

- Power to pull heavy loads
- Long driving range
- Short refilling time
- High energy density leaves more load space
- No impact to utility stability
- Emit no harmful substance

### Ideal solution to zero emission truck and marine in the near term

# Hydrogen is the future of energy, market size \$152 billion this year and \$2.5 trillion by 2050



# Continental and National FCV Target



|        |         |                                 |                                                         |                | <b>A</b>                          |                              |
|--------|---------|---------------------------------|---------------------------------------------------------|----------------|-----------------------------------|------------------------------|
|        |         | Passenger vehicles              | Buses and coaches                                       | Trucks**       | Forklifts                         | Refueling stations           |
|        | Current | 7,271 44                        | 35 active, 39 in development                            | prototype test | >30,000 335                       | ~42 online <sup>37</sup>     |
| US     | Target  |                                 | 5,300,000 FCEVs on US roads by 2030 <sup>337</sup>      |                | 300,000 by<br>2030 <sup>337</sup> | 7,100 by 2030 <sup>337</sup> |
|        | Current | 0                               | 2,000+ 64 83 84 85                                      | 1,500+ 94      | 2                                 | 23 89                        |
| China  | Target  | 3,000 by 2020 87                | 11,600 commercial                                       |                |                                   | 100 by 2020                  |
|        |         | 1,000,000 by 2030 336           | vehicles by 2020 <sup>87</sup>                          |                |                                   | 500 by 2030                  |
|        | Current | ~1000+ 42                       | ~76 42 73 86                                            | ~100 88        | ~300 42                           | ~152 71                      |
| Europe | Target  | 3,700,000 by 2030 <sup>34</sup> | 45,000 fuel cell trucks and buses by 2030 <sup>34</sup> |                |                                   | ~3,700 by 2030 <sup>34</sup> |
|        | Current | 3,219 44                        | 18                                                      | N/A            | 160                               | 127; 10 in progress          |
| Japan  | Target  | 40,000 by 2020                  | 100 by 2020                                             |                | 500 by 2020                       | 160 by 2020                  |
|        |         | 200,000 by 2025                 | 1,200 by 2030 <sup>24</sup>                             |                | 10,000 by 2030 <sup>24</sup>      | 900 by 2030 <sup>24</sup>    |
|        |         | 800,000 by 2030 <sup>24</sup>   |                                                         |                |                                   |                              |

# Fuel Cell Supply Chain





# **Project Overview**



### Objectives

- Develop thin and high conductivity fuel cell PEM to solve fuel crossover issue;
- Duplicate and validate technology at pilot plant and scale up for mass production.

### Targets

- Deliver high performance and competitive cost product to disrupt current PEM market;
- Capture significant market share and becomes market leader within 5 years.

### Tasks

- Complete product design at lab in Silicon Valley;
- Build and set up pilot line to deliver alpha and beta prototypes within 1 year;
- Build and set up mass production line and deliver product in 2 years.

# PEM and MEA are the Most Important Components in Fuel Cell



**PEMFC Electric Power Generation** 



#### **Current Vehicle Fuel Cell System Cost Breakdown**

| Veer | Fuel Cell Mkt Size |          | PEM Mkt |              | Catalyst Mkt |              | MEA Mkt |             |
|------|--------------------|----------|---------|--------------|--------------|--------------|---------|-------------|
| rear | (Billi             | ion USD) | (I      | Billion USD) | (I           | Billion USD) | (B      | illion USD) |
| 2018 | \$                 | 2.0      | \$      | 0.09         | \$           | 0.17         | \$      | 0.34        |
| 2025 | \$                 | 9.0      | \$      | 0.24         | \$           | 0.72         | \$      | 1.16        |
| 2030 | \$                 | 44.4     | \$      | 0.85         | \$           | 3.54         | \$      | 5.21        |

Calculated based on Fuji-Keizai report and U.S. DOE data

Mpower

## **Product Description**





**Mpower's Next Generation Products** 

- PEM: solve fuel (H<sub>2</sub> and O<sub>2</sub>) crossover issue and improve ion conductivity, meanwhile reduce thickness
- MEA: significantly improve the performance and lifecycle, while reduce current high cost.



# **Comparison with Existing PEM Products**



#### **PFSA Membrane (Nafion)**

- Relatively high stability
- Good mechanical strength in harsh chemical environments
- Very thick membrane
- Chemical degradation happens
- Repeated swelling and shrinking causes strength decrease
- Severe fuel crossover
- High cost

### **Composite Membrane**

- Thinner membrane
- Less shrinkage
- Improved mechanical property
- Severe fuel crossover for 5 μm membrane
- Higher cost

#### Mpower ultra-thin membrane

- Even thinner membrane
- Minimum shrinkage
- Replace Nafion with COF
- Improved mechanical property
- Little or no fuel crossover for 5-12 μm membrane
- Competitive cost



### Innovation Based on Breakthrough Nano Porous Material



- Staggered stacking has shown to inhibit gas transport
  - Desirable for H<sub>2</sub> and O<sub>2</sub> crossover inhibition
- Functionalization has shown to achieve great acid resistivity.
- Functionalization and/or impregnation has shown to promote great proton conduction.
- What is left is membrane fabrication.
- We have fabricated a dense COF membrane with characteristics not found in Academia or Industry

# **Target PEM Performance**



| Membrane    | Thickness<br>(μm) | lon Conductivity*<br>(S/cm)             | Conductance*<br>(S/cm <sup>2</sup> ) |
|-------------|-------------------|-----------------------------------------|--------------------------------------|
| Nafion 117  | 200               | 0.14 <sup>ª</sup> , 0.10 <sup>b</sup>   | 5 - 7                                |
| Nafion 112  | 60                | 0.10b                                   | 17                                   |
| Dev. Dow    | 100               | 0.15 <sup>b</sup>                       | 15                                   |
| Gore-Select | 20                | 0.052 <sup>°</sup> , 0.053 <sup>b</sup> | 26                                   |
| Gore-Select | 5                 | 0.028 <sup>ª</sup>                      | 56                                   |
| Gore-Select | 12                | 0.096 <sup>b</sup>                      | 80                                   |
| Mpower      | 5                 | 0.1                                     | 200                                  |

a. z-direction, sulfuric acid immersed sample measured with four-point probe

b. X-y direction, high-frequency measurement for membrane immersed in deionized water.

\* Ion conductivity and conductance tests are performed at 70°C



### Mpower's PEM Product Target

| Key Technical Parameters |           |                   |                                      |                          |
|--------------------------|-----------|-------------------|--------------------------------------|--------------------------|
| Parameter                | Thickness | Ion Conductivity* | Conductance*                         | Hydrogen<br>Permeability |
| Unit                     | μm        | S/cm              | S/cm <sup>2</sup>                    | Barrer                   |
| Value                    | 5         | 0.1               | Gen 1: 120 - 160<br>Gen 2: 160 - 200 | Gen 1: 4<br>Gen 2: 3     |

\* Ion conductivity and conductance tests are performed at 70°C



# Mpower's 5 µm Membrane



First of its kind dense COF layer fabrication US Patent Pending



# Target PEM Cost and Price

| Product         | Cost                   | Price                  |
|-----------------|------------------------|------------------------|
| Gore-Select     | \$5.59/kW <sup>a</sup> | \$14/kW <sup>b</sup>   |
| Mpower Membrane | \$5.48/kW <sup>c</sup> | \$8.77/kW <sup>d</sup> |

a. Gore's membrane cost is not publicly available. This estimation is from U.S. DOE report, production rate at 10,000 units 80kW vehicle per year.

b. Gore keeps its price confidential, this price is from one of Gore's customers.

c. Based on very conservative 120 S/cm<sup>2</sup> conductance compared to Gore's 80S/cm<sup>2</sup> conductance. This is our estimated cost for membrane from the pilot line, which can supply membrane to 3,250 units 80kW FCV. For the mass production line, the cost will be significantly lower.

d. Based on 60% profit margin.

# Membrane Pilot Plant Conceptual layout





Size: 1200m<sup>2</sup> Production capacity: 26,000 m<sup>2</sup>/year

Confidential

# Milestones





### Thank You

+1 (650) 666 - 6860

info@mpowerinnovation.com

1600 Adams Dr, Ste 103, Menlo Park, CA 94025



# Mpower



# Mpower can improve existing filter masks by capturing or kill virus, may be able to replace 3 layers with our membrane



