Animal Models and DNA sequencing technologies to aid in personalized cancer care and research

Irina V. Kovtun, PhD

7

former Assistant Professor at Mayo Clinic, MN

Examples of DNA alterations

DNA methylation \rightarrow Silencing of genes

Next generation DNA sequencing (NGS) technologies

Single gene deep sequencing

Targeted gene panel

Whole exome sequencing (WES)

RNA sequencing

Mate-pair sequencing

Identification of all changes in a gene-driver (BRCA1 and 2 in breast and ovarian cancers).

Cancer type specific, includes a number of genes frequently mutated in a specific cancer.

Identification of all DNA alterations concerning gene regions.

Identification of alterations in the expressed genes, consequential.

Identification of structural alterations, i.e. gene amplifications, big deletions and gene fusions

Genomic profiling of tumors by NGS in Research

- Improve understanding of biology of cancer and mechanisms of disease progression
- Identify biomarkers of early disease detection and treatment sensitivity
- Identify new therapy targets for further drug development

Preclinical testing of genomically-guided therapies

- Generation of cell lines expressing identified alteration to follow progression and study treatment sensitivity
- Testing therapies in high throughput platform in vitro
- Testing of therapies in mouse models in vivo

Tumor evolution

Accumulation of total DNA alterations over time

Appearance of new changes to revert benign changes

Appearance of new changes impacting treatment resistance

Harris FR.....Kovtun IV et al. *Mol Oncol*. 13: 132-152, 2019

Clinical applications of NGS

Plasma or other bodily fluids

Adopted from Leary, Vogelsten,. Velculescu et al 2010.

and treatment sensitivity

Liquid biopsy

Advantages

- Non- invasive nature of the procedures
- Allow more frequent and serial samplings over time
- Useful in case tissue biopsy is not available

Challenges

- The need for an initial histologic diagnosis to be obtained by tissue biopsy.
- Low variant frequency in the blood may => higher false negative rates
- Sensitivity and specificity

Clinical applications of NGS II. Clinical trials

Umbrella

Test the impact of different drugs on different mutations in a single type of cancer

Basket

Test the effect of one or more drugs on one or more single mutations in a variety of cancer types

Clinical trials

Off-label use

Clinical applications of NGS, III Tailored Immunotherapy

Adopted from Ott et al., Nature, 547, p 217–221, 2017

Clinical applications of NGS, III

Development of CAR-T therapies for solid tumors

CAR-T=chimeric antigen receptor T cells

Infusion of CAR-T cells

Cancer models

Genetic mouse models

Common DNA alteration in tumor subtype

mutation knock in

Treatment in vivo

Study of tumorigenesis

Manipulation using established cell line (e.g. gene knockdown, mutation knock in)

> Treatment sensitivity to appropriate drug (known or novel)

> > Implantation of cells

Treatment in vivo

In vitro models for treatment sensitivity

Resection

Tumor maintenance

on a dish

Treatment with

array of drugs

Primary tumor

Patient-derived xenografts

Primary tumor

Resection, Genomic profiling Implantation of primary tumor **Patient-derived xenografts** Tumor propagation Treatment with appropriate drug

3D cell models, organoids

- Very amendable
- Small amount of material needed
- Multiple drug testing
- Time-efficient

Patient-derived xenografts (PDXs)

- Biomarker discovery
- Drug testing
- Elucidation of drug resistance mechanisms and
- Strategies to overcome it
- Toxicity can be assessed

Challenges

- Does not address toxicity overall
- Does not capture tumor heterogeneity

- Time consuming
- Expensive
- Poor rates of implantation for less aggressive tumors

Selection of treatment target

Genome plot, ovarian tumor

Staining of corresponding proteins for the altered genes

NRG1

HER2

Combination of NGS and cancer models

Conclusions

Integrative approach combining

- 1) NGS technologies,
- 2) Therapeutic target analyses and
- 3) Drug response monitoring using appropriate cancer model

Has become an established practice in modern oncology