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Central premises of modern drug discovery

• Disease is caused by a perturbed function of a protein (target). Modulating 
the target by a chemical compound (drug) may cure the disease
• Not a law of nature, but works often enough to be useful
• This makes of pharma companies a major consumer of latest advances in 

biomedical research

• A new drug must be safe for intended use 
• ... that is, provide greatest therapeutic benefit without resulting in unacceptable 

side effects or toxicity
• This makes drug development a long and highly regulated endeavor (for our 

own good) 

• Drug discovery is a costly endeavor – a drug molecule must be covered by 
a patent, so that the drug developer could protect its investment
• This makes pharma companies reluctant to share data and knowledge to 

expedite the discovery process, for the common good
• This is changing – there is a rising interest in open discovery models
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Lead identification

• High-throughput screening (HTS)
• A typical screen in a big pharma company involves 500K to 

3M compounds and takes days to weeks
• highly automated and miniaturized (384 to 1534 well plates
• can be functional (agonist/antagonist, inhibitor/activator) or 

binding
• most often, a fluorescent readout

• Hit identification and follow-up
• HTS outcome (usually tens to thousands of compounds 

showing “positive” signal) is subject to multiple false 
positives and false negatives

• need confirmation by “orthogonal” techniques
• Collect more information on true positives

• pharmacokinetics, toxicity, intellectual property, synthetic 
feasibility, etc.

• Lead identification
• Use information collect to make decision on which 1-3 hit 

series will be selected as leads for further optimization



Lead Optimization

• Structure-Activity Relationships (SAR) analysis
• Synthesis, testing and analysis of structurally related 

compounds to ”take control” of activity (in any assay)

• Structure-based design
• Making use of the 3D structure of the protein target 

to obtain better binders
• Cellular assays

• Engineer or isolate diseased cells to test the lead’s 
potential as a drug
• Not always possible (e.g., Alzheimer’s disease)

• In vivo models
• Engineer animal organisms with human-like 

pathologies
• Not always possible or not faithful enough due to 

differences between animals and humans at both 
molecular and systems levels



Drug Discovery Technologies

• Protein purification/production
• X-ray crystallography
• Organic synthesis
• Assay technologies

• Biophysical
• Biochemical
• Cell-based

• Assay miniaturization
• Compound library management
• Transgenic organisms (disease models)



Technological revolutions
“From now on, things will never be the same”

• X-ray crystallography
• Combinatorial chemistry
• High-throughput screening
• Whole genome sequencing
• Fragment-based discovery
• Virtual screening
• Phenotypic screening
• DNA-encoded libraries
• Protein degraders
• Artificial Intelligence

Hype cycle



A “typical” discovery project – Part I
TAM-targeted cancer therapeutics
• Tyro3/Axl/Mer (TAM) RTK family

• Expressed in monocytes to clear apoptotic material; never expressed in normal T or B lymphocytes
• Expressed in human cancer

• MER: 30-40% T cell Acute Lymphoblastic Leukemia (ALL); MER/AXL: 41% B cell ALL and 68% pediatric AML
• Oncogenic function of ectopic expression

• Survival signaling – anti-apoptosis
• Critical for an “immune system” of a cancer cell

• Promising targets for cancer therapeutics
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A “typical” discovery project – Part II

Huang, X. et al. Structural insights into the inhibited states
of the Mer receptor tyrosine kinase. J Struct Biol 165, 88-
96 (2009).

Liu, J. et al. Discovery of Novel Small Molecule Mer Kinase
Inhibitors for the Treatment of Pediatric Acute
Lymphoblastic Leukemia. ACS Med Chem Lett 3, 129-134
(2012).

Stephen V. Frye

Dmitri Kireev

Xiaodong Wang

William Janzen



A “typical” discovery project – Part III
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Computational drug discovery

Concepts
• Structure-based
• Ligand-based
Modes
• Predictive
• Design



Structure-based design

• Goal: Design new small-molecule ligands by 
making use of 3D structure of the target protein
• May be used when there are no ligands known to the 

target protein

• Making incremental changes to a ligand
• to induce “good” interactions
• to eliminate “bad” contacts
• to minimize the entropic penalty

• Intermolecular interactions
• Electrostatic
• Hydrogen bonds
• Van der Waals
• Cation-p, aromatic stacking, halogen bonds
• Entropic – solvation
• Entropic – configurational



Data-driven design of in vivo anti-tumor probes

• A new technology to assemble ligands from 
fragments directly in the protein’s binding site 
was developed

• Unlike most computational techniques, that 
are “virtual screeners”, FRASE-based design is a 
“virtual medicinal chemist”

• The new concept was used to design a series 
of TAM inhibitors with better intra-TAM and 
kinome-wide selectivity by extending the 
template type I kinase inhibitors toward the 
back-pocket
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Docking / Virtual screening

• Docking is an algorithm to determine whether and how 
a ligand binds to a protein target
• Scoring function calculates, in a fraction of seconds, a (very) 

rough estimate of binding free energy that is used to rank 
docked ligands from the least to most plausible target binder

• Algorithms:
• Hundreds developed, but only a few are frequently used
• AutoDock, DOCK, FlexX, FRED, Glide, GOLD, ICM, QXP/Flo+, Surflex

• seconds per ligand

• Often used to perform virtual screening of large 
compound databases
• do not need to be an in-house collection
• can be millions of commercially available or potentially 

synthesizable compounds

• Output is a compound set enriched in true actives
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Discovery of Mer kinase inhibitors by virtual screening

• Techniques
• Docking / Scoring: Glide
• Re-scoring: Structural Protein-Ligand Interaction Fingerprints (SPLIF)

• Screening library
• Enamine (~4 million compounds)

• Experimental testing (62 compounds)
• Microfluidic Capillary Electrophoresis (MCE) assay

• Hit overview
• 15 hits with valid dose-response curves (24%)

• IC50 ranges from 0.46 to 9.9 µM
• Enrichment = 200-fold (24% / 0.12%)

Da et al., Bioorg. Med. Chem., 2015, 23, 1096

IC50 = 0.46 µM

SPLIF-selected pose:
an intuitive, but chemically non-
trivial similarity

Enamine



Molecular mechanics / Molecular dynamics

• Molecular Mechanics
• Goal: to predict 3D molecular structure
• simple empirical equations – collectively called force fields (FF) –

are used to calculate the energy of inter-atomic interactions 
(instead of solving corresponding Schrodinger equation)

• a search algorithm (e.g., Newton-Raphson) can be used to find a 
molecular geometry with a minimal FF energy

• Molecular dynamics
• Goal: to simulate natural molecular motions

• ideally, to determine the partition function for the molecule of 
interest, that is, how much time the molecule spends in each of its 
microstates

• Each atom is given an initial momentum; their 3D coordinates 
are recalculated after each time step dt using classical equations 
of motion and potential energy from force fields

https://slideplayer.com/slide/8858697/

https://slideplayer.com/slide/8999257/



Discovery of allosteric activators of PRC2 mutant

• Goal: Develop selective allosteric activators of 
the PRC2 mutant EED-I363M

• Computational contribution:
• Elucidated differences in dynamics of the 

mutant and wild type complexes
• Determined that a specific activator for the 

mutant should satisfy two conditions
• Fit to a larger pocket of the mutant EED
• Bind to and stabilize SRM helix of EZH2, a 

histone lysine methyltransferase
• Proposed necessary ligand modifications

• Compounds were made, experimentally 
characterized and confirmed predictions

EZH2

EED

EED 
binding 
pocket

M363
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Prediction of ligand-protein binding affinity

• Accurate prediction of the protein-ligand binding 
free energy (∆𝐺) used to be a “holy grail” in the 
molecular modeling community and there is a 
recent regain of interest to this field

• The most general and thorough way to calculate 
∆𝐺 would be to simulate a ligand and a receptor 
in a box long enough and see how much time 
would it spend in a protein-bound state
• would take hundreds of years of calculation on current 

computers

• Next best option is making use of free energy 
perturbation theory
• to calculate differences between binding free energies of 

two very similar ligands (∆∆𝐺)

• Then, absolute binding free energy can be 
calculated through progressive waning of the 
ligand in the binding site 



COVID Moonshot project

• COVID Moonshot aims to rapidly develop new 
therapies against the SARS-CoV-2 main viral protease

• Runs on Folding@Home, a distributed computer 
system
• claimed by the protagonists as the largest supercomputer in 

the world)

• This pro bono initiative crowdsourced 4,500 drug 
designs, synthesized 311, and is now testing them 
against viral proteins



Ligand-based design
• Goal: Design or test new ligands based on the 

analysis ligand structures
• No need in 3D protein structure
• Requires known examples of ligands to the protein target of 

interest
• is the approach medicinal chemists use for over a century

• Makes use of the structure-activity relationships 
(SAR), an assumption that similar compounds show 
similar biological activity
• not a law of nature, but works more often than not

• Chemoinformatics quantifies and automates 
multiple design tasks
• Q(uantitative)SAR, a machine learning (ML)-based approach 

that helps to build models for ligand-based virtual screening
• Similarity/diversity analyses help to more efficiently create 

compound libraries for experimental screening
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Automated design of ligands to polypharmacological profiles

• Designing drugs with a specific multi-target profile is 
both complex and difficult

• Authors proposed a new approach for the automated 
design of ligands against profiles of multiple drug 
targets

• Demonstrated by the evolution of an approved 
acetylcholinesterase inhibitor drug into brain-
penetrable ligands with either specific 
polypharmacology or selectivity profiles for G-protein-
coupled receptors

• 800 ligand–target predictions of designed ligands were 
tested experimentally
• 75% were confirmed to be correct. 

• Selected leads demonstrate target engagement in vivo

https://www.nature.com/articles/nature11691

Besnard et al., Nature, v. 492, p. 215–220 (2012)



Artificial intelligence

• Multiple applications from most obvious to AI-
specific

• Deep neural networks as machine learning (ML) 
techniques for Quantitative Structure-
Activity/Property Relationships

• Molecular Mechanics with deep-learned force 
fields

• Deep-learned quantum chemistry models
• Generative neural networks to enumerate novel 

compounds with desired properties

MoleculeNet: a benchmark for molecular machine learning

https://pubs.rsc.org/--/content/articlehtml/2018/sc/c7sc02664a
Wu et al., Chem. Sci., 2018, 9, 513-530



Deep reinforcement learning for de novo drug design

• Authors devised a novel strategy for de novo 
design of molecules with desired properties 
termed ReLeaSE (Reinforcement Learning for 
Structural Evolution)

• integrates two deep neural networks—generative 
and predictive – trained separately but are used 
jointly to generate novel targeted chemical 
libraries

• As a proof-of-concept, ReLeaSE was used to 
design chemical libraries with a bias toward
• structural complexity 
• melting point or hydrophobicity
• inhibitory activity against Janus protein kinase 2

https://advances.sciencemag.org/content/4/7/eaap7885?intcmp=trendmd-adv

Popova et al., Science Advances, 4, 7, eaap7885

Workflow of deep reinforcement learning for generating new SMILES

A sample of molecules produced by the generative model



Perspectives

• Increase the pace, cut the cost of developing probes and drugs for new targets
• There are an estimated 3,000 to 10,000 disease-causing proteins that might be 

targeted by small molecule drugs. Less than a thousand are targeted by all current 
drugs. This means that the goal of having a small-molecule probe to every target 
would take decades (and tens of billion dollars) to accomplish

• New computational strategies may help
• Need predictions for animal models and humans to decrease the attrition rate

• Lack of efficacy, poor pharmacokinetics and elevated toxicity account for most of 
failures in clinics

• Connect genomics to chemistry to clinical data

https://www.sciencedirect.com/science/article/abs/pii/S0169409X16300370

https://www.researchgate.net/profile/Dmitri_Kireev
https://twitter.com/deka27516

https://pharmacy.unc.edu/directory/kireev/
https://pharmacy.unc.edu/

https://www.researchgate.net/profile/Dmitri_Kireev
https://twitter.com/deka27516
https://pharmacy.unc.edu/directory/kireev/
https://pharmacy.unc.edu/


Alternatives to drug discovery

• Biologics
• Medical devices
• Nanomedicine
• Regenerative medicine


