From Widely Used to Now Being Removed: Presence & Removal Methods for 1,4-Dioxane

Alexandra L. Polasko (apolasko@ucla.edu), Ivy Kwok, Yu Miao, Nicholas W. Johnson, and Shaily Mahendra

University of California Los Angeles Department of Civil & Environmental Engineering

Engineering Sustainable Infrastructure for the Future

What is 1,4-Dioxane?

Sources [1,2]

- Initially produced ~1930's
- Solvent stabilizer for metal degreasers (e.g. 1,1,1-trichloroethane)
- Used in paint strippers, dyes, greases, varnishes, waxes
 Impurity in <u>household</u> detergents, antifreeze, cosmetics, deodorants, shampoos, and other products

[1] EPA (2017), Scope of the Risk Evaluation for 1,4-Dioxane (CASRN 123-91-1). [2] Mohr, Stickney, and DiGuiseppi. *CRC Press*. 2010

What is 1,4-Dioxane?

Sources [1,2]

- Initially produced ~1930's
- Solvent stabilizer for metal degreasers (e.g. 1,1,1-trichloroethane)
- Used in paint strippers, dyes, greases, varnishes, waxes
 Impurity in <u>household</u> detergents, antifreeze, cosmetics, deodorants, shampoos, and other products
- In 2016, 617,000 lbs released into environment
 - 2% Landfills
 - 9% Air
 - 10% Surface Wate
 - 79% Other

[1] EPA (2017), Scope of the Risk Evaluation for 1,4-Dioxane (CASRN 123-91-1). [2] Mohr, Stickney, and DiGuiseppi. *CRC Press*. 2010

What is 1,4-Dioxane?

Sources [1,2]

- Initially produced ~1930's
- Solvent stabilizer for metal degreasers (e.g. 1,1,1-trichloroethane)
- Used in paint strippers, dyes, greases, varnishes, waxes
 Impurity in <u>household</u> detergents, antifreeze, cosmetics, deodorants, shampoos, and other products
- In 2016, 617,000 lbs released into environment
 - 2% Landfills
 - 9% Air
 - 10% Surface Wat
 - 79% Other

In 1995, the Montreal Protocol **phased out the use of 1,4-dioxane** as a stabilizer. However, its persistence in the environment remains quite high.

[1] EPA (2017), Scope of the Risk Evaluation for 1,4-Dioxane (CASRN 123-91-1).
 [2] Mohr, Stickney, and DiGuiseppi. *CRC Press*. 2010

Physical & Chemical Properties

Chemical Property

Environmental Implications

Cyclic ether

Highly soluble in water (>100 mg/mL)

Low Henry's Law Constant

 $(K_{\rm H} = 4.88 \text{ x } 10^{-6} \text{ atm } \text{m}^3 \text{ mol}^{-1})$

Lower adsorption properties

 $(\log K_{ow} = -0.27)$

Chemically stable

Rapidly flows through water

Low volatility

Not likely to bioaccumulate or be slowed by porous materials

[3] United States. Environmental Protection Agency. Office of Solid Waste and Emergency Response. Technical Fact Sheet-1,4-Dioxane.

Toxicology

- Probable human carcinogen (IARC Class 2B)
- Hepatotoxin, neurotoxin, reproductive toxin
- Long-Term Exposure \rightarrow liver and kidney cancer
 - Rat study found **development of oral and liver cancer** after 12 weeks of oral ingestion! [4]

[4] Qiu, J. et al. 1,4-Dioxane Exposure Induces Kidney Damage in Mice by Perturbing Specific Renal Metabolic Pathways: An Integrated Omics Insight into the Underlying Mechanisms. *Chemosphere*, 2019, 228, 149-158.

Toxicology

- Probable human carcinogen (IARC Class 2B)
- Hepatotoxin, neurotoxin, reproductive toxin
- Long-Term Exposure \rightarrow liver and kidney cancer Rat study found development of oral and liver cancer after 12 weeks of oral ingestion! [4]

Release Routes

- Air
- Surface Water
- Landfills
 - Other
- **Consumer Products**
- Food Packaging
- Groundwater

[4] Qiu, J. et al. 1,4-Dioxane Exposure Induces Kidney Damage in Mice by Perturbing Specific Renal Metabolic Pathways: An Integrated Omics Insight into the Underlying Mechanisms. Chemosphere, 2019, 228, 149-158.

Toxicology

- Probable human carcinogen (IARC Class 2B)
- Hepatotoxin, neurotoxin, reproductive toxin
- Long-Term Exposure ightarrow liver and kidney cancer
 - Rat study found **development of oral and liver cancer** after 12 weel

Release R

- Air
- **Surface**
- Landfills

Other

- Campaign for Safe Cosmetics found that **22%** (1 in 5) cosmetic products
 - L in 5) cosmetic products contain 1,4-dioxane [5] ISUMER Products
 - od Packaging

Groundwater

[5] Environmental Working Group (2007). 1,4- dioxane. https://www.ewg.org/skindeep/ingredients/726331-1-4-dioxane/.

Toxicology

- Probable human carcinogen (IARC Class 2B)
- Hepatotoxin, neurotoxin, reproductive toxin
- Long-Term Exposure ightarrow liver and kidney cancer
 - Rat study found development of oral and liver cancer after 12 weel n! (Qui et al., Chemosr

Release R

- Air
- Surface

Other

Landfills

Campaign for Safe Cosmetics found that **22%** (1 in 5) cosmetic products contain 1,4-dioxane [5] As of June 2015, ~7% of **public water** supplies tested showed exceedances of the health advisory levels for 1,4-dioxane

[6]

[5] Environmental Working Group (2007). 1,4- dioxane. <u>https://www.ewg.org/skindeep/ingredients/726331-1-4-dioxane/</u>.
 [6] Suthersan, S., et al. Making Strides in the Management of "Emerging Contaminants". *Groundwater Monitoring & Remediation*, 2016, 36, 15-25.

Improper Disposal + Toxicity + Miscibility

Improper Disposal + Toxicity + Miscibility

1,4-Dioxane Groundwater Contamination &

Widespread Human Health Concern

No US Federal Regulation, But States Can Set Clean Up Standard

[6] Suthersan, S., et al. Making Strides in the Management of "Emerging [7] US Environmental Protection Agency (EPA). 2015. The third Contaminants". *Groundwater Monitoring & Remediation*, 2016, 36, 15-25. unregulated contaminant monitoring rule (UCMR3): data summary.

Luckily, Microbes Can Biodegrade 1,4-Dioxane

Bioremediation: Use of either naturally occurring or deliberately introduced microorganisms or other forms of life to consume and break down environmental pollutants.

Zhang, S., et al. Advances in Bioremediation of 1,4-Dioxane-Contaminated Waters. Journal of Environmental Management, 2017, 204, 765-774.

Luckily, Microbes Can Biodegrade 1,4-Dioxane

Bioremediation: Use of either naturally occurring or deliberately introduced microorganisms or other forms of life to consume and break down environmental pollutants.

-774

Table 1

Zhang, S.,

List of 1,4-dioxane degrading microorganisms and biodegradation rates. MO – Monooxygenase; THF – Tetrahydrofuran; TSS – Total suspended solids; N/A – Not available.

Strain	Induced enzyme	Biodegradation rate	Reference
Metabolism			
Pseudonocardia dioxanivorans CB1190	1,4-dioxane MO	$0.19 \pm 0.007 \text{ mg/h/mg-protein}$	Mahendra and Alvarez-Cohen (2005, 2006)
Actinomycete CB1190	N/A	0.33 mg/min/mg-protein	Parales et al. (1994)
Amycolata sp. CB1190	N/A	$0.92 \pm 0.29 \text{ mg/day/mg-protein}$	Kelley et al. (2001)
Pseudonocardia benzenivorans B5		$0.01 \pm 0.003 \text{ mg/h/mg-protein}$	Mahendra and Alvarez-Cohen (2006)
Mycobacterium sp. PH-06	MO	60 mg/L/day	Kim et al. (2009)
Acinetobacter baumannii DD1	MO	2.38 mg/h/L	Huang et al. (2014)
Pseudonocardia carboxydivorans. RM-31	N/A	31.6 mg/L/hr	Matsui et al. (2016)
Xanthobacter flavus DT8	N/A	Similar as CB1190	Chen et al. (2016)
Afipia sp. D1		0.052 to 0.263 mg/mg-protein/h	Sei et al. (2013)
Cordyceps sinensis (fungus)	MO	0.011 mol/day	Nakamiya et al. (2005)
Cometabolism			
Mycobacterium austroafricanum JOB5	Propane MO	0.40 ± 0.06 mg/h/mg-protein	House and Hyman (2010); Lan et al. (2013);
			Mahendra and Alvarez-Cohen (2006)
Rhodococcus ruber ENV425	Propane MO	10 mg/h/g TSS	Lippincott et al. (2015); Vainberg et al. (2006)
Pseudonocardia sp. strain ENV478	THF MO	21 mg/h/g TSS	Masuda et al. (2012); Vainberg et al. (2006)
Rhodococcus RR1	N/A	0.38 ± 0.03 mg/h/mg-protein	Mahendra and Alvarez-Cohen (2006)
Rhodococcus jostii RHA1	Propane MO	N/A	Hand et al. (2015); Li et al. (2013)
	1-butane MO		
Flavobacterium	N/A	N/A	Sun et al. (2011)
Pseudonocardia K1	THF MO	0.26 ± 0.013 mg/h/mg-protein	Mahendra and Alvarez-Cohen (2006)
Burkholderia cepacia G4	toluene-2- MO	0.1 ± 0.006 mg/h/mg-protein	Mahendra and Alvarez-Cohen (2006)
Ralstonia pickettii PKO1	toluene-p- MO	$0.31 \pm 0.007 \text{ mg/h/mg-protein}$	Mahendra and Alvarez-Cohen (2006)
Pseudomonas mendocina KR1	toluene-4- MO	0.37 ± 0.04 mg/h/mg-protein	Mahendra and Alvarez-Cohen (2006)
Aureobasidium pullmans NRRL 21064	N/A	6-8 mg/L within a day	Patt and Abebe (1995)
Graphium sp. (ATCC 58400) (fungus)	Propane MO	4 ± 1 nmol/min/mg dry weight	Skinner et al. (2009)
	THF MO	9 ± 5 nmol/min/mg dry weight	
Others			
Shewanella oneidensis	N/A	27.9 \pm 3.37 to 36.2 \pm 4.13 μ M/h	Sekar et al. (2016)
Enriched consortium-FS	МО	0.037 mg/h/mg-protein	Nam et al. (2016)
Enriched consortium-AS		0.078 mg/h/mg-protein	Nam et al. (2016)
SL-D(propanotroph strain)	N/A	20 mg/L within a day	Innovative Engineering Solutions Inc.IESI (2017)
CL-OUT [®]	N/A	Over 70% removal	Saul (2012)
(Pseudomonas putidastrain B,			
Pseudomonas putida stain E			
and Pseudomonas fluorescens strain G)			

Luckily, Microbes Can Biodegrade 1,4-Dioxane

Bioremediation: Use of either naturally occurring or deliberately introduced microorganisms or other forms of life to consume and break down environmental pollutants.

WHICH MICROBE DO WE CHOOSE?

Pseudonocardia dioxanivorans CB1190 (CB1190)

CB1190 grown on R2A Agar

SEM Image of CB1190

[9] Mahendra, S. and L. Alvarez-Cohen. *Pseudonocardia Dioxanivorans* Sp Nov., a Novel Actinomycete That Grows on 1,4-Dioxane. *Int. J. of Syst. and Evol. Micr.*, 2005, 55, 593-598.

CB1190 Aerobically Biodegrades 1,4-Dioxane

CB1190 Aerobically Biodegrades 1,4-Dioxane

Obstacles for CB1190: Low Oxygen

How Long Can CB1190 Survive Without Oxygen?

1,4-Dioxane Degraded After 1 Week Anaerobic

----- 0 Weeks Anaerobic (Positive Control)

-1 Week Anaerobic

Polasko, A. et al. A Mixed Microbial Community for the Biodegradation of Chlorinated Ethenes and 1,4-Dioxane. *Environmental Science & Technology Letters*, 2018, 6, 49-54.

1,4-Dioxane Degraded After 2 Weeks Anaerobic

---- 0 Weeks Anaerobic (Positive Control) ----- 1 Week Anaerobic ----- 2 Weeks Anaerobic

Polasko, A. et al. A Mixed Microbial Community for the Biodegradation of Chlorinated Ethenes and 1,4-Dioxane. *Environmental Science & Technology Letters*, 2018, 6, 49-54.

1,4-Dioxane Degraded After 3 Weeks Anaerobic

Polasko, A. et al. A Mixed Microbial Community for the Biodegradation of Chlorinated Ethenes and 1,4-Dioxane. *Environmental Science & Technology Letters*, 2018, 6, 49-54.

1,4-Dioxane Degraded After 4 Weeks Anaerobic

Polasko, A. et al. A Mixed Microbial Community for the Biodegradation of Chlorinated Ethenes and 1,4-Dioxane. *Environmental Science & Technology Letters*, 2018, 6, 49-54.

1,4-Dioxane Degraded After 5 Weeks Anaerobic

Technology Letters, 2018, 6, 49-54.

1,4-Dioxane Degraded After 100 Days Without O₂!

Polasko, A. et al. A Mixed Microbial Community for the Biodegradation of Chlorinated Ethenes and 1,4-Dioxane. *Environmental Science & Technology Letters*, 2018, 6, 49-54.

Summary & Significance

- **1,4-Dioxane is a threat to drinking water** in the U.S. that needs a variety of treatment options
- Benefits of microorganisms include: lower costs, less disruption to the land area, and complete mineralization of 1,4-dioxane
- Particularly, *Pseudonocardia dioxanivorans* CB1190 an ideal candidate for bioremediation
 - Uses 1,4-dioxane as carbon source
 - Survives under harsh environmental conditions (e.g. prolonged low O₂)

Alex & Dr. Shaily Mahendra at a contaminated groundwater site

Future Research & Applications

- Deploy CB1190 to field sites with varying dissolved oxygen
- Determine the threshold of O₂ CB1190 needs to break down 1,4-dioxane
- Investigate the mechanisms CB1190 uses to survive anaerobic incubation
- Test whether other 1,4-dioxane degrading microorganisms can survive without oxygen like CB1190

Alex in the lab during pandemic with social distancing

Acknowledgements

- Dr. Shaily Mahendra & Mahendra lab members
- Strategic Environmental Research and Development Program (SERDP) Award ER-2713
- UCLA Department of Civil and Environmental Engineering
- National Science Foundation (Grant 1255021)
- Dow/Dupont

UCLA ENGINEERING

Civil and Environmental Engineering

THANK YOU FOR YOUR ATTENTION QUESTIONS?

СПАСИБО ЗА ВНИМАНИЕ! ЕСТЬ ВОПРОСЫ?